OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 22, Iss. S5 — Aug. 25, 2014
  • pp: A1243–A1256

Design of antireflective nanostructures and optical coatings for next-generation multijunction photovoltaic devices

Emmett E. Perl, William E. McMahon, John E. Bowers, and Daniel J. Friedman  »View Author Affiliations

Optics Express, Vol. 22, Issue S5, pp. A1243-A1256 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (3003 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The successful development of multijunction photovoltaic devices with four or more subcells has placed additional importance on the design of high-quality broadband antireflection coatings. Antireflective nanostructures have shown promise for reducing reflection loss compared to the best thin-film interference coatings. However, material constraints make nanostructures difficult to integrate without introducing additional absorption or electrical losses. In this work, we compare the performance of various nanostructure configurations with that of an optimized multilayer antireflection coating. Transmission into a four-junction solar cell is computed for each antireflective design, and the corresponding cell efficiency is calculated. We find that the best performance is achieved with a hybrid configuration that combines nanostructures with a multilayer thin-film optical coating. This approach increases transmitted power into the top subcell by 1.3% over an optimal thin-film coating, corresponding to an increase of approximately 0.8% in the modeled cell efficiency.

© 2014 Optical Society of America

OCIS Codes
(040.5350) Detectors : Photovoltaic
(160.4760) Materials : Optical properties
(310.1210) Thin films : Antireflection coatings
(350.6050) Other areas of optics : Solar energy
(310.4165) Thin films : Multilayer design
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Light Trapping for Photovoltaics

Original Manuscript: April 21, 2014
Revised Manuscript: June 6, 2014
Manuscript Accepted: June 10, 2014
Published: July 15, 2014

Emmett E. Perl, William E. McMahon, John E. Bowers, and Daniel J. Friedman, "Design of antireflective nanostructures and optical coatings for next-generation multijunction photovoltaic devices," Opt. Express 22, A1243-A1256 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. C. Law, R. R. King, H. Yoon, M. J. Archer, A. Boca, C. M. Fetzer, S. Mesropian, T. Isshiki, M. Haddad, K. M. Edmondson, D. Bhusari, J. Yen, R. A. Sherif, H. A. Atwater, and N. H. Karam, “Future technology pathways of terrestrial III–V multijunction solar cells for concentrator photovoltaic systems,” Sol. Energy Mater. Sol. Cells 94(8), 1314–1318 (2010). [CrossRef]
  2. R. R. King, A. Boca, W. Hong, X. Q. Liu, D. Bhusari, D. Larrabee, K. M. Edmondson, D. C. Law, C. M. Fetzer, S. Mesropian, and N. H. Karam, “Band-gap-engineered architectures for high-efficiency multijunction concentrator solar cells,” in 24th European Photovoltaic Solar Energy Conference and Exhibition21, (2009).
  3. F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. D. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, A. W. Bett, R. Krause, M. Piccin, N. Blanc, C. Drazek, E. Guiot, B. Ghyselen, T. Salvetat, A. Tauzin, T. Signamarcheix, A. Dobrich, T. Hannappel, and K. Schwarzburg, “Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency,” Prog. Photovolt. Res. Appl. 22(3), 277–282 (2014). [CrossRef]
  4. P. T. Chiu, D. C. Law, R. L. Woo, S. B. Singer, D. Bhusari, W. D. Hon, A. Zakaria, J. Boisvert, S. Mesropian, R. R. King, and N. H. Karam, “Direct semiconductor bonded 5J cell for space and terrestrial applications,” IEEE J. Photovoltaics 4(1), 493–497 (2014). [CrossRef]
  5. P. Patel, D. Aiken, D. Chumney, A. Cornfeld, Y. Lin, C. Mackos, J. McCarty, N. Miller, P. Sharps, and M. Stan, “Initial results of the monolithically grown six-junction inverted metamorphic multi-junction solar cell,” in Proc 38th IEEE Photovoltaic Spec. Conf., (Institute of Electrical and Electronics Engineers, 2012), vol. 2, pp. 1–4.
  6. R. M. France, I. Garcia, W. E. McMahon, A. G. Norman, J. Simon, J. F. Geisz, D. J. Friedman, and M. J. Romero, “Lattice-mismatched 0.7-eV GaInAs solar cells grown on GaAs using GaInP compositionally graded buffers,” IEEE J. Photovoltaics 4(1), 190–195 (2014). [CrossRef]
  7. D. J. Friedman, J. F. Geisz, A. G. Norman, M. W. Wanlass, and S. R. Kurtz, “0.7-eV GaInAs junction for a GaInP/GaAs/GaInas(1eV)/GaInAs(0.7eV) four-junction solar cell,” in Proc. 4th IEEE World Conference for Photovoltaic Energy Conversion, (Institute of Electrical and Electronics Engineers, 2006), pp. 598–602. [CrossRef]
  8. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 43),” Prog. Photovolt. Res. Appl. 22(1), 1–9 (2014). [CrossRef]
  9. R. M. France, J. F. Geisz, M. A. Steiner, D. J. Friedman, J. S. Ward, J. M. Olson, W. Olavarria, M. Young, and A. Duda, “Pushing inverted metamorphic multijunction solar cells toward higher efficiency at realistic operating conditions,” IEEE J. Photovoltaics 3(2), 893–898 (2013). [CrossRef]
  10. J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, “40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions,” Appl. Phys. Lett. 93(12), 123505 (2008). [CrossRef]
  11. D. J. Friedman, J. M. Olson, and S. R. Kurtz, “High-efficiency III-V multijunction solar cells,” in Handbook of Photovoltaic Science and Engineering, 2nd Ed., A. Luque and S. Hegedus, eds, (Wiley, Chichester UK, 2011), 314–364.
  12. D. J. Aiken, “High performance anti-reflection coatings for broadband multi-junction solar cells,” Sol. Energy Mater. Sol. Cells 64(4), 393–404 (2000). [CrossRef]
  13. W. H. Southwell, “Coating design using very thin high- and low-index layers,” Appl. Opt. 24(4), 457–460 (1985). [CrossRef] [PubMed]
  14. C. G. Bernhard, “Structural and functional adaptation in a visual system,” Endeavor 26, 79–84 (1967).
  15. S. J. Wilson and M. C. Hutley, “The optical properties of moth eye antireflection surfaces,” J. Mod. Opt. 29, 993–1009 (1982).
  16. H. A. Macleod, Thin-Film Optical Filters (CRC Press, Boca Raton, Fla., 2001), Chap. 4.
  17. J. Tommila, A. Aho, A. Tukiainen, V. Polojärvi, J. Salmi, T. Niemi, and M. Guina, “Moth-eye antireflection coating fabricated by nanoimprint lithography on 1 eV dilute nitride solar cell,” Prog. Photovolt. Res. Appl. 21, 1158–1162 (2013).
  18. D. Liang, Y. Kang, Y. Huo, Y. Chen, Y. Cui, and J. S. Harris, “High-efficiency nanostructured window GaAs solar cells,” Nano Lett. 13(10), 4850–4856 (2013). [CrossRef] [PubMed]
  19. J. Tommila, V. Polojärvi, A. Aho, A. Tukiainen, J. Viheriälä, J. Salmi, A. Schramm, J. M. Kontio, A. Turtiainen, T. Niemi, and M. Guina, “Nanostructured broadband antireflection coatings on AlInP fabricated by nanoimprint lithography,” Sol. Energy Mater. Sol. Cells 94(10), 1845–1848 (2010). [CrossRef]
  20. K.-H. Hung, T.-G. Chen, T.-T. Yang, P. Yu, C.-Y. Hong, Y.-R. Wu, and G.-C. Chi, “Antireflective scheme for InGaP/InGaAs/Ge triple junction solar cells based on TiO2 biomimetic structures,” in Proc 38th IEEE Photovoltaic Spec. Conf., (Institute of Electrical and Electronics Engineers, 2012), pp. 003322–003324.
  21. P. Yu, M.-Y. Chiu, C.-H. Chang, C.-Y. Hong, Y.-L. Tsai, H.-V. Han, and Y.-R. Wu, “Towards high-efficiency multi-junction solar cells with biologically inspired nanosurfaces,” Prog. Photovolt. Res. Appl. 22(3), 300–307 (2014). [CrossRef]
  22. E. E. Perl, C.-T. Lin, W. E. McMahon, D. J. Friedman, and J. E. Bowers, “Ultra-broadband & wide-angle hybrid antireflection coatings with nanostructures,” IEEE J. Photovoltaics 4(3), 962–967 (2014). [CrossRef]
  23. J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010). [CrossRef] [PubMed]
  24. M. Victoria, C. Domínguez, I. Antón, and G. Sala, “Antireflective coatings for multijunction solar cells under wide-angle ray bundles,” Opt. Express 20(7), 8136–8147 (2012). [CrossRef] [PubMed]
  25. P. I. Stavroulakis, S. A. Boden, T. Johnson, and D. M. Bagnall, “Suppression of backscattered diffraction from sub-wavelength ‘moth-eye’ arrays,” Opt. Express 21(1), 1–11 (2013). [CrossRef] [PubMed]
  26. M. C. Hutley, “Diffraction gratings,” in Techniques of Physics, (Academic Press, London, 1982).
  27. D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci. 273(1587), 661–667 (2006). [CrossRef] [PubMed]
  28. A. Garahan, L. Pilon, J. Yin, and I. Saxena, “Effective optical properties of absorbing nanoporous and nanocomposite thin films,” J. Appl. Phys. 101(1), 014320 (2007). [CrossRef]
  29. W. H. Southwell, “Gradient-index antireflection coatings,” Opt. Lett. 8(11), 584–586 (1983). [CrossRef] [PubMed]
  30. Y. M. Song, H. J. Choi, J. S. Yu, and Y. T. Lee, “Design of highly transparent glasses with broadband antireflective subwavelength structures,” Opt. Express 18(12), 13063–13071 (2010). [CrossRef] [PubMed]
  31. G. C. Park, Y. M. Song, E. K. Kang, and Y. T. Lee, “Size-dependent optical behavior of disordered nanostructures on glass substrates,” Appl. Opt. 51(24), 5890–5896 (2012). [CrossRef] [PubMed]
  32. W. E. McMahon, C.-T. Lin, J. S. Ward, J. F. Geisz, M. W. Wanlass, J. J. Carapella, W. Olavarría, M. Young, M. A. Steiner, R. M. France, A. E. Kibbler, A. Duda, J. M. Olson, E. E. Perl, D. J. Friedman, and J. E. Bowers, “Metal pillar interconnection topology for bonded two-terminal multijunction III-V solar cells,” IEEE J. Photovoltics 2, 868–872 (2013).
  33. M. N. Polyanskiy, “Refractive Index Database” (2014), http://refractiveindex.info .
  34. W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited