OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 22, Iss. S5 — Aug. 25, 2014
  • pp: A1343–A1354

Mode-based analysis of silicon nanohole arrays for photovoltaic applications

Justin L. Donnelly, Björn C. P. Sturmberg, Kokou B. Dossou, Lindsay C. Botten, Ara A. Asatryan, Christopher G. Poulton, Ross C. McPhedran, and C. Martijn de Sterke  »View Author Affiliations

Optics Express, Vol. 22, Issue S5, pp. A1343-A1354 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1547 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate the optical properties of silicon nanohole arrays for application in photovoltaic cells in terms of the modes within the structure. We highlight three types of modes: fundamental modes, important at long wavelengths; guided resonance modes, which enhance absorption for wavelengths where the intrinsic absorption of silicon is low; and channeling modes, which suppress front-surface reflection. We use this understanding to explain why the parameters of optimized nanohole arrays occur in specific ranges even as the thickness is varied.

© 2014 Optical Society of America

OCIS Codes
(350.6050) Other areas of optics : Solar energy
(050.5298) Diffraction and gratings : Photonic crystals
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Light Trapping for Photovoltaics

Original Manuscript: June 3, 2014
Revised Manuscript: July 14, 2014
Manuscript Accepted: August 4, 2014
Published: August 14, 2014

Justin L. Donnelly, Björn C. P. Sturmberg, Kokou B. Dossou, Lindsay C. Botten, Ara A. Asatryan, Christopher G. Poulton, Ross C. McPhedran, and C. Martijn de Sterke, "Mode-based analysis of silicon nanohole arrays for photovoltaic applications," Opt. Express 22, A1343-A1354 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Masson, M. Latour, M. Rekinger, I.-T. Theologitis, and M. Papoutsi, “Global Market Outlook for Photovoltaics 2013–2017,” European Photovoltaic Industry Association (2013), http://www.epia.org/news/publications/global-market-outlook-for-photovoltaics-2013-2017/ .
  2. K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16, 21793–21800 (2008). [CrossRef] [PubMed]
  3. H. Ossenbrink, T. Huld, A. Jäger Waldau, and N. Taylor, “PV Electricity Cost Maps,” http://iet.jrc.ec.europa.eu/remea/sites/remea/files/reqno_jrc83366_jrc_83366_2013_pv_electricity_cost_maps.pdf .
  4. M. K. Dawood, T. H. Liew, P. Lianto, M. H. Hong, S. Tripathy, J. T. L. Thong, and W. K. Choi, “Interference lithographically defined and catalytically etched, large-area silicon nanocones from nanowires,” Nanotechnology 21, 205305 (2010). [CrossRef] [PubMed]
  5. Q. G. Du, C. H. Kam, H. V. Demir, H. Y. Yu, and X. W. Sun, “Enhanced optical absorption in nanopatterned silicon thin films with a nano-cone-hole structure for photovoltaic applications,” Opt. Lett. 36, 1713–1715 (2011). [CrossRef] [PubMed]
  6. L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7, 3249–3252 (2007). [CrossRef] [PubMed]
  7. K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11, 1851–1856 (2011). [CrossRef] [PubMed]
  8. B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, R. C. McPhedran, and C. M. de Sterke, “Nanowire array photovoltaics: Radial disorder versus design for optimal efficiency,” Appl. Phys. Lett. 101, 173902 (2012). [CrossRef]
  9. C. Lin and M. L. Povinelli, “Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications,” Opt. Express 17, 19371–19381 (2011). [CrossRef]
  10. C. Lin and M. L. Povinelli, “Optical absorption enhancement in silicon nanowire and nanohole arrays for photo-voltaic applications,” Proc. SPIE 7772, 77721G (2010). [CrossRef]
  11. S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett. 10, 1012–1015 (2010). [CrossRef] [PubMed]
  12. G. Gomard, R. Peretti, S. Callard, X. Meng, R. Artinyan, T. Deschamps, P. R. i Cabarrocas, E. Drouard, and C. Seassal, “Blue light absorption enhancement based on vertically channelling modes in nano-holes arrays,” Appl. Phys. Lett. 104, 051119 (2014). [CrossRef]
  13. G. Gomard, E. Drouard, X. Letartre, X. Meng, A. Kaminski, A. Fave, M. Lemiti, E. Garcia-Caurel, and C. Seassal, “Two-dimensional photonic crystal for absorption enhancement in hydrogenated amorphous silicon thin film solar cells,” J. Appl. Phys. 108, 123102 (2010). [CrossRef]
  14. A. Bozzola, M. Liscidini, and L. C. Andreani, “Photonic light-trapping versus Lambertian limits in thin film silicon solar cells with 1D and 2D periodic patterns,” Opt. Express 20, A224–A244 (2012). [CrossRef] [PubMed]
  15. F. Wang, H. Yu, J. Li, S. Wong, X. W. Sun, X Wang, and H Zheng, “Design guideline of high efficiency crystalline Si thin film solar cell with nanohole array textured surface,” J. Appl. Phys. 109, 084306 (2011). [CrossRef]
  16. K.-Q. Peng, X Wang, L Li, X.-L. Wu, and S.-T. Lee, “High-performance silicon nanohole solar cells,” J. Am. Chem. Soc. 132, 6873 (2010). [CrossRef]
  17. M. Kroll, S. Fahr, C. Helgert, C. Rockstuhl, F. Lederer, and T. Pertsch, “Employing dielectric diffractive structures in solar cells: a numerical study,” Phys. Stat. Solidi A 205, 2777–2795 (2008). [CrossRef]
  18. M. A. Green and M. J. Keevers, “Optical properties of intrinsic silicon at 300 K,” Prog. Photovolt: Res. Appl. 3, 189 (1995). [CrossRef]
  19. E. D. Palik, Handbook of Optical Constants of Solids (Elsevier, 1991).
  20. Available from: http://emustack.com/
  21. K. B. Dossou, L. C. Botten, A. A. Asatryan, B. C. P. Sturmberg, M. A. Byrne, C. G. Poulton, R. C. McPhedran, and C. M. de Sterke, “Modal formulation for diffraction by absorbing photonic crystal slabs,” J. Opt. Soc. Am. A 29, 817–831 (2012). [CrossRef]
  22. American Society for Testing Materials, “Reference Solar Spectral Irradiance: Air Mass 1.5 Spectra,” http://rredc.nrel.gov/solar/spectra/am1.5/ .
  23. W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of pn junction solar cells,” J. Appl. Phys. 29, 510–519 (1961). [CrossRef]
  24. The parameter κj= |(T12)j,0|2 where T12 is the transmission scattering matrix that couples light from air to the nanohole array (see Ref. [25]). Index 0 labels incident plane wave.
  25. B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, C. M. de Sterke, and R. C. McPhedran, “Modal analysis of enhanced absorption in silicon nanowire arrays,” Opt. Express 19, 1064–1081 (2011). [CrossRef]
  26. L. Genzel and T. P. Martin, “Infrared absorption by surface phonons and surface plasmons in small crystals,” Surf. Sci. 34, 33–49 (1973).
  27. N. M. Litchinitser, S. C. Dunn, P. E. Steinvurzel, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, “Application of an ARROW model for designing tunable photonic devices,” Opt. Express 12, 1540–1550 (2004). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited