OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 22, Iss. S5 — Aug. 25, 2014
  • pp: A1363–A1371

Multi-periodic nanostructures for photon control

Christian Kluge, Jost Adam, Nicole Barié, Peter-Jürgen Jakobs, Markus Guttmann, and Martina Gerken  »View Author Affiliations

Optics Express, Vol. 22, Issue S5, pp. A1363-A1371 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2702 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose multi-periodic nanostructures yielded by superposition of multiple binary gratings for wide control over photon emission in thin-film devices. We present wavelength- and angle-resolved photoluminescence measurements of multi-periodically nanostructured organic light-emitting layers. The spectral resonances are determined by the periodicities of the individual gratings. By varying component duty cycles we tune the relative intensity of the main resonance from 12% to 82%. Thus, we achieve simultaneous control over the spectral resonance positions and relative intensities.

© 2014 Optical Society of America

OCIS Codes
(230.3670) Optical devices : Light-emitting diodes
(260.5740) Physical optics : Resonance
(160.4236) Materials : Nanomaterials
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Subwavelength structures, nanostructures

Original Manuscript: June 17, 2014
Revised Manuscript: August 11, 2014
Manuscript Accepted: August 13, 2014
Published: August 21, 2014

Christian Kluge, Jost Adam, Nicole Barié, Peter-Jürgen Jakobs, Markus Guttmann, and Martina Gerken, "Multi-periodic nanostructures for photon control," Opt. Express 22, A1363-A1371 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. H. Crawford, “LEDs for Solid-State Lighting: Performance Challenges and Recent Advances,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1028–1040 (2009). [CrossRef]
  2. V. Bulović, V. B. Khalfin, G. Gu, P. E. Burrows, D. Z. Garbuzov, and S. R. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B 58(7), 3730–3740 (1998). [CrossRef]
  3. S. Zhang, G. A. Turnbull, and I. D. W. Samuel, “Enhancing the emission directionality of organic light-emitting diodes by using photonic microstructures,” Appl. Phys. Lett. 103(21), 213302 (2013). [CrossRef]
  4. W. H. Koo, S. M. Jeong, F. Araoka, K. Ishikawa, S. Nishimura, T. Toyooka, and H. Takezoe, “Light extraction from organic light-emitting diodes enhanced by spontaneously formed buckles,” Nat. Photonics 4(4), 222–226 (2010). [CrossRef]
  5. A. David, H. Benisty, and C. Weisbuch, “Photonic crystal light-emitting sources,” Rep. Prog. Phys. 75(12), 126501 (2012). [CrossRef] [PubMed]
  6. L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, D. A. Ritchie, and D. S. Wiersma, “Quasi-periodic distributed feedback laser,” Nat. Photonics 4(3), 165–169 (2010). [CrossRef]
  7. J. Herrnsdorf, B. Guilhabert, Y. Chen, A. Kanibolotsky, A. Mackintosh, R. Pethrick, P. Skabara, E. Gu, N. Laurand, and M. Dawson, “Flexible blue-emitting encapsulated organic semiconductor DFB laser,” Opt. Express 18(25), 25535–25545 (2010). [CrossRef] [PubMed]
  8. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107(41), 17491–17496 (2010). [CrossRef] [PubMed]
  9. J. M. Lupton, B. J. Matterson, I. D. W. Samuel, M. J. Jory, and W. L. Barnes, “Bragg scattering from periodically microstructured light emitting diodes,” Appl. Phys. Lett. 77(21), 3340 (2000). [CrossRef]
  10. L. Tutt and J. F. Revelli, “Distribution of radiation from organic light-emitting diode structures with wavelength-scale gratings as a function of azimuth and polar angles,” Opt. Lett. 33(5), 503–505 (2008). [CrossRef] [PubMed]
  11. U. Geyer, J. Hauss, B. Riedel, S. Gleiss, U. Lemmer, and M. Gerken, “Large-scale patterning of indium tin oxide electrodes for guided mode extraction from organic light-emitting diodes,” J. Appl. Phys. 104(9), 093111 (2008). [CrossRef]
  12. E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4(4), 2665 (2013). [PubMed]
  13. E. R. Martins, J. Li, Y. Liu, J. Zhou, and T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: The supercell concept,” Phys. Rev. B 86(4), 041404 (2012). [CrossRef]
  14. J.-W. Kim, J.-H. Jang, M.-C. Oh, J.-W. Shin, D.-H. Cho, J.-H. Moon, and J.-I. Lee, “FDTD analysis of the light extraction efficiency of OLEDs with a random scattering layer,” Opt. Express 22(1), 498–507 (2014). [CrossRef] [PubMed]
  15. L. Dal Negro, C. J. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. S. Wiersma, “Light transport through the band-edge states of Fibonacci quasicrystals,” Phys. Rev. Lett. 90(5), 055501 (2003). [CrossRef] [PubMed]
  16. A. Othonos, X. Lee, and R. M. Measures, “Superimposed multiple Bragg gratings,” Electron. Lett. 30(23), 1972–1974 (1994). [CrossRef]
  17. W.-C. Tan, J. Sambles, and T. Preist, “Double-period zero-order metal gratings as effective selective absorbers,” Phys. Rev. B 61(19), 13177–13182 (2000). [CrossRef]
  18. D. C. Skigin and R. A. Depine, “Diffraction by dual-period gratings,” Appl. Opt. 46(9), 1385–1391 (2007). [CrossRef] [PubMed]
  19. I. Balin, N. Dahan, V. Kleiner, and E. Hasman, “Bandgap structure of thermally excited surface phonon polaritons,” Appl. Phys. Lett. 96(7), 071911 (2010). [CrossRef]
  20. C. Kluge, M. Rädler, A. Pradana, M. Bremer, P.-J. Jakobs, N. Barié, M. Guttmann, and M. Gerken, “Extraction of guided modes from organic emission layers by compound binary gratings,” Opt. Lett. 37(13), 2646–2648 (2012). [CrossRef] [PubMed]
  21. R. F. Kazarinov and C. Henry, “Second-order distributed feedback lasers,” IEEE J. Quantum Electron. 21(2), 144–150 (1985). [CrossRef]
  22. T. Tamir and S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys. (Berl.) 14(3), 235–254 (1977). [CrossRef]
  23. Y. Hirai, S. Harada, H. Kikuta, Y. Tanaka, M. Okano, S. Isaka, and M. Kobayasi, “Imprint lithography for curved cross-sectional structure using replicated Ni mold,” J. Vac. Sci. Technol. B. 20(6), 2867 (2002).
  24. B. A. Sexton and R. J. Marnock, “Characterization of High Resolution Resists and Metal Shims by Scanning Probe Microscopy,” Microsc. Microanal. 6(2), 129–136 (2000). [PubMed]
  25. C. Vannahme, S. Klinkhammer, A. Kolew, P.-J. Jakobs, M. Guttmann, S. Dehm, U. Lemmer, and T. Mappes, “Integration of organic semiconductor lasers and single-mode passive waveguides into a PMMA substrate,” Microelectron. Eng. 87(5–8), 693–695 (2010). [CrossRef]
  26. M. Hansen, M. Ziegler, H. Kohlstedt, A. Pradana, M. Rädler, and M. Gerken, “UV capillary force lithography for multiscale structures,” J. Vac. Sci. Technol. B. 30(3), 031601 (2012).
  27. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12(5), 1068–1076 (1995). [CrossRef]
  28. D. L. Brundrett, E. N. Glytsis, T. K. Gaylord, and J. M. Bendickson, “Effects of modulation strength in guided-mode resonant subwavelength gratings at normal incidence,” J. Opt. Soc. Am. A 17(7), 1221–1230 (2000). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited