OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 22, Iss. S5 — Aug. 25, 2014
  • pp: A1372–A1379

Surface plasmon polariton enhanced ultrathin nano-structured CdTe solar cell

Ting S. Luk, Nche T. Fofang, Jose L. Cruz-Campa, Ian Frank, and Salvatore Campione  »View Author Affiliations

Optics Express, Vol. 22, Issue S5, pp. A1372-A1379 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2462 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate numerically that two-dimensional arrays of ultrathin CdTe nano-cylinders on Ag can serve as an effective broadband anti-reflection structure for solar cell applications. Such devices exhibit strong absorption properties, mainly in the CdTe semiconductor regions, and can produce short-circuit current densities of 23.4 mA/cm2, a remarkable number in the context of solar cells given the ultrathin dimensions of our nano-cylinders. The strong absorption is enabled via excitation of surface plasmon polaritons (SPPs) under plane wave incidence. In particular, we identified the key absorption mechanism as enhanced fields of the SPP standing waves residing at the interface of CdTe nano-cylinders and Ag. We compare the performance of Ag, Au, and Al substrates, and observe significant improvement when using Ag, highlighting the importance of using low-loss metals. Although we use CdTe here, the proposed approach is applicable to other solar cell materials with similar absorption properties.

© 2014 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(310.1210) Thin films : Antireflection coatings
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Light Trapping for Photovoltaics

Original Manuscript: June 26, 2014
Revised Manuscript: August 6, 2014
Manuscript Accepted: August 9, 2014
Published: August 21, 2014

Ting S. Luk, Nche T. Fofang, Jose L. Cruz-Campa, Ian Frank, and Salvatore Campione, "Surface plasmon polariton enhanced ultrathin nano-structured CdTe solar cell," Opt. Express 22, A1372-A1379 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. J. de Wild-Scholten, “Energy payback time and carbon footprint of commercial photovoltaic systems,” Sol. Energy Mater. Sol. Cells119, 296–305 (2013). [CrossRef]
  2. J. Britt and C. Ferekides, “Thin‐film CdS/CdTe solar cell with 15.8% efficiency,” Appl. Phys. Lett.62(22), 2851–2852 (1993). [CrossRef]
  3. N. Romeo, A. Bosio, V. Canevari, and A. Podestà, “Recent progress on CdTe/CdS thin film solar cells,” Sol. Energy77(6), 795–801 (2004). [CrossRef]
  4. X. Wu, “High-efficiency polycrystalline CdTe thin-film solar cells,” Sol. Energy77(6), 803–814 (2004). [CrossRef]
  5. S. Mokkapati, F. J. Beck, A. Polman, and K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells,” Appl. Phys. Lett.95(5), 053115 (2009). [CrossRef]
  6. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys.101, 093105 (2007).
  7. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010). [CrossRef] [PubMed]
  8. S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, and M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys.109, 073105 (2011).
  9. K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express16(26), 21793–21800 (2008). [CrossRef] [PubMed]
  10. V. E. Ferry, M. A. Verschuuren, H. B. T. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett.95, 183503 (2009).
  11. N. T. Fofang, T. S. Luk, M. Okandan, G. N. Nielson, and I. Brener, “Substrate-modified scattering properties of silicon nanostructures for solar energy applications,” Opt. Express21(4), 4774–4782 (2013). [CrossRef] [PubMed]
  12. P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun.3, 692 (2012). [CrossRef] [PubMed]
  13. S. Jeong, E. C. Garnett, S. Wang, Z. Yu, S. Fan, M. L. Brongersma, M. D. McGehee, and Y. Cui, “Hybrid silicon nanocone-polymer solar cells,” Nano Lett.12(6), 2971–2976 (2012). [CrossRef] [PubMed]
  14. K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett.12(3), 1616–1619 (2012). [CrossRef] [PubMed]
  15. J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett.10(6), 1979–1984 (2010). [CrossRef] [PubMed]
  16. J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett.9(1), 279–282 (2009). [CrossRef] [PubMed]
  17. J. K. Day, O. Neumann, N. K. Grady, and N. J. Halas, “Nanostructure-mediated launching and detection of 2D surface plasmons,” ACS Nano4(12), 7566–7572 (2010). [CrossRef] [PubMed]
  18. H. Ditlbacher, J. R. Krenn, A. Hohenau, A. Leitner, and F. R. Aussenegg, “Efficiency of local light-plasmon coupling,” Appl. Phys. Lett.83(18), 3665–3667 (2003). [CrossRef]
  19. X. Li, D. Han, F. Wu, C. Xu, X. Liu, and J. Zi, “Flat metallic surfaces coated with a dielectric grating: excitations of surface plasmon–polaritons and guided modes,” J. Phys. Condens. Matter20(48), 485001 (2008). [CrossRef]
  20. I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficiency of local surface plasmon polariton excitation on ridges,” Phys. Rev. B78(11), 115115 (2008). [CrossRef]
  21. I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficient unidirectional ridge excitation of surface plasmons,” Opt. Express17(9), 7228–7232 (2009). [CrossRef] [PubMed]
  22. S. Randhawa, M. U. González, J. Renger, S. Enoch, and R. Quidant, “Design and properties of dielectric surface plasmon Bragg mirrors,” Opt. Express18(14), 14496–14510 (2010). [CrossRef] [PubMed]
  23. J. Yoon, G. Lee, S. H. Song, C.-H. Oh, and P.-S. Kim, “Surface-plasmon photonic band gaps in dielectric gratings on a flat metal surface,” J. Appl. Phys.94(1), 123–129 (2003). [CrossRef]
  24. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100(20), 207402 (2008). [CrossRef] [PubMed]
  25. M. Pu, Q. Feng, C. Hu, and X. Luo, “Perfect absorption of light by coherently induced plasmon hybridization in ultrathin metamaterial film,” Plasmonics7(4), 733–738 (2012). [CrossRef]
  26. I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano7(9), 7824–7832 (2013). [CrossRef] [PubMed]
  27. K. R. Catchpole and M. A. Green, “A conceptual model of light coupling by pillar diffraction gratings,” J. Appl. Phys.101, 063105 (2007).
  28. K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett.93, 191113 (2008).
  29. V. E. Ferry, M. A. Verschuuren, H. B. T. Li, E. Verhagen, R. J. Walters, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express18(S2), A237–A245 (2010). [CrossRef] [PubMed]
  30. W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric core-shell nanoparticles,” ACS Nano6(6), 5489–5497 (2012). [CrossRef] [PubMed]
  31. N. A. Mirin and N. J. Halas, “Light-bending nanoparticles,” Nano Lett.9(3), 1255–1259 (2009). [CrossRef] [PubMed]
  32. S. J. Oldenburg, G. D. Hale, J. B. Jackson, and N. J. Halas, “Light scattering from dipole and quadrupole nanoshell antennas,” Appl. Phys. Lett.75(8), 1063–1065 (1999). [CrossRef]
  33. G. Pellegrini, P. Mazzoldi, and G. Mattei, “Asymmetric plasmonic nanoshells as subwavelength directional nanoantennas and color nanorouters: a multipole interference approach,” J. Phys. Chem.116, 21536–21546 (2012).
  34. E. Xifré-Pérez, L. Shi, U. Tuzer, R. Fenollosa, F. Ramiro-Manzano, R. Quidant, and F. Meseguer, “Mirror-image-induced magnetic modes,” ACS Nano7(1), 664–668 (2013). [CrossRef] [PubMed]
  35. B. Aguirre, D. Zubia, R. Ordonez, F. Anwar, H. Prieto, C. Sanchez, M. Salazar, A. A. Pimentel, J. Michael, X. Zhou, J. McClure, G. Nielson, and J. Cruz-Campa, “Selective growth of CdTe on nano-patterned CdS via close-space sublimation,” J. Electron. Mater.43(7), 2651–2657 (2014). [CrossRef]
  36. I. B. Bhat, S. R. Rao, S. Shintri, and R. N. Jacobs, “Blanket and patterned growth of CdTe on (211)Si substrates by metal-organic vapor phase epitaxy,” Phys. Status Solidi C9, 1712–1715 (2012).
  37. S. Shintri, S. Rao, C. Schaper, W. Palosz, S. Trivedi, F. Semendy, P. Wijewarnasuriya, and I. Bhat, “Metalorganic vapor phase epitaxial growth of (211)B CdTe on nanopatterned (211)Si,” Phys. Status Solidi C9, 1716–1719 (2012).
  38. J. J. Chavez, D. K. Ward, B. M. Wong, F. P. Doty, J. L. Cruz-Campa, G. N. Nielson, V. P. Gupta, D. Zubia, J. McClure, and X. W. Zhou, “Defect formation dynamics during CdTe overlayer growth,” Phys. Rev. B85(24), 245316 (2012). [CrossRef]
  39. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1991).
  40. P. Wurfel, Physics of Solar Cells (Wiley-VCH, 2009).
  41. J. L. Cruz-Campa, G. N. Nielson, P. J. Resnick, M. Okandan, R. Young, D. Zubia, and V. Gupta, “Ultrathin and micro-sized solar cell performance optimization via simulations,” Prog. Photovolt. Res. Appl.21, 1114–1126 (2013).
  42. J. L. Cruz-Campa, M. Okandan, P. J. Resnick, P. Clews, T. Pluym, R. K. Grubbs, V. P. Gupta, D. Zubia, and G. N. Nielson, “Microsystems enabled photovoltaics: 14.9% efficient 14 mu m thick crystalline silicon solar cell,” Sol. Energy Mater. Sol. Cells95(2), 551–558 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited