OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 22, Iss. S5 — Aug. 25, 2014
  • pp: A1380–A1388

Single chip super broadband InGaN/GaN LED enabled by nanostructured substrate

Stuart (Shizhuo) Yin, Chao Wang, Wenbin Zhu, Jimmy Yao, Jun Zou, Xiaoyan Lin, and Claire Luo  »View Author Affiliations


Optics Express, Vol. 22, Issue S5, pp. A1380-A1388 (2014)
http://dx.doi.org/10.1364/OE.22.0A1380


View Full Text Article

Enhanced HTML    Acrobat PDF (1503 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new type of LED, single chip super broadband InGaN/GaN LED is presented in this paper. The LED is composed of an InGaN/GaN quantum well layer deposited on the nanostructured sapphire substrate, inscribed by femtosecond laser ablation. The super broadband emission is enabled due to the large variation of indium composition in a small local area so that different wavelengths can be emitted over a small area and the summation of these different emission wavelengths forms super broadband emission, which covers the entire visible spectral range. The result of this paper represents a major technological advance in white light LED lighting because it enables single chip white LED lighting without the need of phosphor down converter that can significantly improve the efficiency without the Stokes loss and reduce the cost.

© 2014 Optical Society of America

OCIS Codes
(230.0230) Optical devices : Optical devices
(230.3670) Optical devices : Light-emitting diodes

ToC Category:
Light-Emitting Diodes

History
Original Manuscript: July 8, 2014
Revised Manuscript: July 30, 2014
Manuscript Accepted: July 30, 2014
Published: August 22, 2014

Citation
Stuart (Shizhuo) Yin, Chao Wang, Wenbin Zhu, Jimmy Yao, Jun Zou, Xiaoyan Lin, and Claire Luo, "Single chip super broadband InGaN/GaN LED enabled by nanostructured substrate," Opt. Express 22, A1380-A1388 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-S5-A1380


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. H. Crawford, “LEDs for solid-state lighting: performance challenges and recent advances,” IEEE J. Sel. Top. Quantum Electron.15(4), 1028–1040 (2009). [CrossRef]
  2. E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science308(5726), 1274–1278 (2005). [CrossRef] [PubMed]
  3. T. Mukai, M. Yamada, and S. Nakamura, “Characteristics of InGaN-based UV/blue/green/amber/red light-emitting diodes,” Jpn. J. Appl. Phys.38(7A7R), 3976–3981 (1999). [CrossRef]
  4. S. Nakamura, T. Mukai, and M. Senoh, “Candela class high brightness InGaN/AlGaN double heterostructure blue light emitting diodes,” Appl. Phys. Lett.64(13), 1687–1689 (1994). [CrossRef]
  5. S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, and T. Mukai, “Superbright Green InGaN Single Quantum Well Structure Light-Emitting Diodes,” Jpn. J. Appl. Phys.34(10B10B), L1332–L1335 (1995). [CrossRef]
  6. T. Mukai, D. Morita, and S. Nakamura, “High-power UV InGaN/AlGaN double-heterostructure LEDs,” J. Cryst. Growth189-190, 778–781 (1998). [CrossRef]
  7. T. Mukai, M. Yamada, and S. Nakamura, “Current and temperature dependences of electroluminescence of InGaN-based UV/blue/green light-emitting diodes,” Jpn. J. Appl. Phys.37(11B11B), L1358–L1361 (1998). [CrossRef]
  8. T. Mukai, H. Narimatsu, and S. Nakamura, “Amber InGaN-based light-emitting diodes operable at high ambient temperatures,” Jpn. J. Appl. Phys.37(5A5A), L479–L481 (1998). [CrossRef]
  9. H. Sekiguchi, K. Kishino, and A. Kikuchi, “Emission color control from blue to red with nanocolumn diameter of InGaN/GaN nanocolumn arrays grown on same substrate,” Appl. Phys. Lett.96(23), 231104 (2010). [CrossRef]
  10. B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process.63(2), 109–115 (1996). [CrossRef]
  11. A. Y. Vorobyev and C. Guo, “Enhanced absorptance of gold following multipulse femtosecond laser ablation,” Phys. Rev. B72(19), 195422 (2005). [CrossRef]
  12. S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. Iannotti, and L. Lanotte, “Generation of silicon nanoparticles via femtosecond laser ablation in vacuum,” Appl. Phys. Lett.84(22), 4502–4504 (2004). [CrossRef]
  13. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2(4), 219–225 (2008). [CrossRef]
  14. D. Ashkenasi, A. Rosenfeld, H. Varel, M. Wahmer, and E. E. B. Campbell, “Laser processing of sapphire with picosecond and sub-picosecond pulses,” Appl. Surf. Sci.120(1-2), 65–80 (1997). [CrossRef]
  15. D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci.150(1-4), 101–106 (1999). [CrossRef]
  16. S. L. Chuang and C. S. Chang, “A band-structure model of strained quantum-well wurtzite semiconductors,” Semicond. Sci. Technol.12(3), 252–263 (1997). [CrossRef]
  17. S. L. Chuang and C. S. Chang, “k·p method for strained wurtzite semiconductors,” Phys. Rev. B54(4), 2491–2504 (1996). [CrossRef]
  18. Y.-H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, “‘S-shaped’ temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett.73(10), 1370–1372 (1998). [CrossRef]
  19. E. Kuokstis, J. W. Yang, G. Simin, M. Asif Khan, R. Gaska, and M. S. Shur, “Two mechanisms of blueshift of edge emission in InGaN-based epilayers and multiple quantum wells,” Appl. Phys. Lett.80(6), 977–979 (2002). [CrossRef]
  20. T. Kuykendall, P. Ulrich, S. Aloni, and P. Yang, “Complete composition tunability of InGaN nanowires using a combinatorial approach,” Nat. Mater.6(12), 951–956 (2007). [CrossRef] [PubMed]
  21. F. Qian, S. Gradečak, Y. Li, C. Y. Wen, and C. M. Lieber, “Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes,” Nano Lett.5(11), 2287–2291 (2005). [CrossRef] [PubMed]
  22. W. Guo, A. Banerjee, P. Bhattacharya, and B. S. Ooi, “InGaN/GaN disk-in-nanowire white light emitting diodes on (001) silicon,” Appl. Phys. Lett.98(19), 193102 (2011). [CrossRef]
  23. Z. Li, Y. Jiang, T. Yu, Z. Yang, Y. Tao, C. Jia, Z. Chen, Z. Yang, and G. Zhang, “Analyses of surface temperatures on patterned sapphire substrate for the growth of GaN with metal organic chemical vapor deposition,” Appl. Surf. Sci.257(18), 8062–8066 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited