OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 22, Iss. S6 — Oct. 20, 2014
  • pp: A1400–A1411

Hybrid tandem solar cell enhanced by a metallic hole-array as the intermediate electrode

Xuanru Zhang, Qiuping Huang, Jigang Hu, Randy J. Knize, and Yalin Lu  »View Author Affiliations

Optics Express, Vol. 22, Issue S6, pp. A1400-A1411 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1716 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A metallic hole-array structure was inserted into a tandem solar cell structure as an intermediate electrode, which allows a further fabrication of a novel and efficient hybrid organic-inorganic tandem solar cell. The inserted hole-array layer reflects the higher-energy photons back to the top cell, and transmits lower-energy photons to the bottom cell via the extraordinary optical transmission (EOT) effect. In this case light absorption in both top and bottom subcells can be simultaneously enhanced via both structural and material optimizations. Importantly, this new design could remove the constraints of requiring lattice-matching and current-matching between the used two cascaded subcells in a conventional tandem cell structure, and therefore, the tunnel junction could be no longer required. As an example, a novel PCBM/CIGS tandem cell was designed and investigated. A systematic modeling study was made on the structural parameter tuning, with the period ranging from a few hundreds nanometers to over one micrometer. Surface plasmon polaritons, magnetic plasmon polaritons, localized surface plasmons, and optical waveguide modes were found to participate in the EOT and the light absorption enhancement. Impressively, more than 40% integrated power enhancement can be achieved in a variable structural parameter range.

© 2014 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(350.6050) Other areas of optics : Solar energy
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Light Trapping for Photovoltaics

Original Manuscript: July 7, 2014
Revised Manuscript: August 13, 2014
Manuscript Accepted: August 17, 2014
Published: August 28, 2014

Xuanru Zhang, Qiuping Huang, Jigang Hu, Randy J. Knize, and Yalin Lu, "Hybrid tandem solar cell enhanced by a metallic hole-array as the intermediate electrode," Opt. Express 22, A1400-A1411 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Yamaguchi, T. Takamoto, and K. Araki, “Super high-efficiency multi-junction and concentrator solar cells,” Sol. Energy Mater. Sol. Cells 90(18-19), 3068–3077 (2006). [CrossRef]
  2. T. Ameri, G. Dennler, C. Lungenschmied, and C. J. Brabec, “Organic tandem solar cells: A review,” Energy Environ. Sci. 2(4), 347–363 (2009). [CrossRef]
  3. W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–519 (1961). [CrossRef]
  4. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010). [CrossRef] [PubMed]
  5. V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008). [CrossRef] [PubMed]
  6. J. N. Munday and H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett. 11(6), 2195–2201 (2011). [CrossRef] [PubMed]
  7. D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006). [CrossRef]
  8. K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008). [CrossRef]
  9. W. Wang, S. Wu, K. Reinhardt, Y. Lu, and S. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett. 10(6), 2012–2018 (2010). [CrossRef] [PubMed]
  10. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]
  11. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  12. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998). [CrossRef]
  13. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001). [CrossRef] [PubMed]
  14. S. Fahr, C. Rockstuhl, and F. Lederer, “Sandwiching intermediate reflectors in tandem solar cells for improved photon management,” Appl. Phys. Lett. 101(13), 133904 (2012). [CrossRef]
  15. J. Üpping, A. Bielawny, R. B. Wehrspohn, T. Beckers, R. Carius, U. Rau, S. Fahr, C. Rockstuhl, F. Lederer, M. Kroll, T. Pertsch, L. Steidl, and R. Zentel, “Three-dimensional photonic crystal intermediate reflectors for enhanced light-trapping in tandem solar cells,” Adv. Mater. 23(34), 3896–3900 (2011). [CrossRef] [PubMed]
  16. T. Soederstroem, F. J. Haug, X. Niquille, V. Terrazzoni, and C. Ballif, “Asymmetric intermediate reflector for tandem micromorph thin film silicon solar cells,” Appl. Phys. Lett. 94(6), 063501 (2009). [CrossRef]
  17. D. Dominé, P. Buehlmann, J. Bailat, A. Billet, A. Feltrin, and C. Ballif, “Optical management in high-efficiency thin-film silicon micromorph solar cells with a silicon oxide based intermediate reflector,” Phys. Status Solidi-R. 2(4), 163–165 (2008). [CrossRef]
  18. A. Bielawny, J. Uepping, P. T. Miclea, R. B. Wehrspohn, C. Rockstuhl, F. Lederer, M. Peters, L. Steidl, R. Zentel, S.-M. Lee, M. Knez, A. Lambertz, and R. Carius, “3D photonic crystal intermediate reflector for micromorph thin-film tandem solar cell,” Phys. Status Solidi A 205(12), 2796–2810 (2008). [CrossRef]
  19. P. G. OBrien, Y. Yang, A. Chutinan, P. Mahtani, K. Leong, D. P. Puzzo, L. D. Bonifacio, C.-W. Lin, G. A. Ozin, and N. P. Kherani, “Selectively transparent and conducting photonic crystal solar spectrum splitters made of alternating sputtered indium-tin oxide and spin-coated silica nanoparticle layers for enhanced photovoltaics,” Sol. Energy Mater. Sol. Cells 102, 173–183 (2012). [CrossRef]
  20. F. Monestier, J.-J. Simon, P. Torchio, L. Escoubas, F. Florya, S. Bailly, R. de Bettignies, S. Guillerez, and C. Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend,” Sol. Energy Mater. Sol. Cells 91(5), 405–410 (2007). [CrossRef]
  21. M. I. Alonso, M. Garriga, C. A. D. Rincon, E. Hernandez, and M. Leon, “Optical functions of chalcopyrite CuGaxIn1-xSe2 alloys,” Appl. Phys., A Mater. Sci. Process. 74(5), 659–664 (2002). [CrossRef]
  22. D. Mergel and Z. Qiao, “Dielectric modelling of optical spectra of thin In2O3: Sn films,” J. Phys. D Appl. Phys. 35(8), 794–801 (2002). [CrossRef]
  23. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]
  24. J. Jin, The Finite Element Method in Electromagnetics (Wiley, 2002).
  25. H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66(7-8), 163–182 (1944). [CrossRef]
  26. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).
  27. B. J. Lee, L. P. Wang, and Z. M. Zhang, “Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film,” Opt. Express 16(15), 11328–11336 (2008). [CrossRef] [PubMed]
  28. L. P. Wang and Z. M. Zhang, “Resonance transmission or absorption in deep gratings explained by magnetic polaritons,” Appl. Phys. Lett. 95(11), 111904 (2009). [CrossRef]
  29. P. Baruch, A. Devos, P. T. Landsberg, and J. E. Parrott, “On some thermodynamic aspects of photovoltaic solar-energy conversion,” Sol. Energy Mater. Sol. Cells 36(2), 201–222 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited