OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 22, Iss. S6 — Oct. 20, 2014
  • pp: A1412–A1421

Microstructured porous ZnO thin film for increased light scattering and improved efficiency in inverted organic photovoltaics

Amoolya Nirmal, Aung Ko Ko Kyaw, Xiao Wei Sun, and Hilmi Volkan Demir  »View Author Affiliations


Optics Express, Vol. 22, Issue S6, pp. A1412-A1421 (2014)
http://dx.doi.org/10.1364/OE.22.0A1412


View Full Text Article

Enhanced HTML    Acrobat PDF (1273 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Microstructured porous zinc oxide (ZnO) thin film was developed and demonstrated as an electron selective layer for enhancing light scattering and efficiency in inverted organic photovoltaics. High degree of porosity was induced and controlled in the ZnO layer by incorporation of polyethylene glycol (PEG) organic template. Scanning electron microscopy, contact angle and absorption measurements prove that the ZnO:PEG ratio of 4:1 is optimal for the best performance of porous ZnO. Ensuring sufficient pore-filling, the use of porous ZnO leads to a marked improvement in device performance compared to non-porous ZnO, with 35% increase in current density and 30% increase in efficiency. Haze factor studies indicate that the performance improvement can be primarily attributed to the improved light scattering enabled by such a highly porous structure.

© 2014 Optical Society of America

OCIS Codes
(250.0250) Optoelectronics : Optoelectronics
(310.0310) Thin films : Thin films

ToC Category:
Light Trapping for Photovoltaics

History
Original Manuscript: July 7, 2014
Revised Manuscript: August 9, 2014
Manuscript Accepted: August 15, 2014
Published: August 28, 2014

Citation
Amoolya Nirmal, Aung Ko Ko Kyaw, Xiao Wei Sun, and Hilmi Volkan Demir, "Microstructured porous ZnO thin film for increased light scattering and improved efficiency in inverted organic photovoltaics," Opt. Express 22, A1412-A1421 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-S6-A1412


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. R. Forrest, “The limits to organic photovoltaic cell efficiency,” MRS Bull.30(01), 28–32 (2005). [CrossRef]
  2. M. T. Dang, G. Wantz, H. Bejbouji, M. Urien, O. J. Dautel, L. Vignau, and L. Hirsch, “Polymeric solar cells based on P3HT:PCBM: Role of the casting solvent,” Sol. Energy Mater. Sol. Cells95(12), 3408–3418 (2011). [CrossRef]
  3. J. D. Servaites, M. A. Ratner, and T. J. Marks, “Organic solar cells: A new look at traditional models,” Energy & Environmental Science4(11), 4410–4422 (2011). [CrossRef]
  4. V. Shrotriya, L. Gang, Y. Yan, T. Moriarty, K. Emery, and Y. Yang, “Accurate measurement and characterization of organic solar cells,” Adv. Funct. Mater.16(15), 2016–2023 (2006). [CrossRef]
  5. C. W. Tang, “Two-layer organic photovoltaic cell,” Appl. Phys. Lett.48(2), 183–185 (1986). [CrossRef]
  6. Z. He, C. Zhong, S. Su, M. Xu, H. Wu, and Y. Cao, “Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure,” Nat. Photonics6(9), 593–595 (2012). [CrossRef]
  7. “ http://www.heliatek.com/ ”, retrieved.
  8. Y. Yao, J. Hou, Z. Xu, G. Li, and Y. Yang, “Effects of solvent mixtures on the nanoscale phase separation in polymer solar cells,” Adv. Funct. Mater.18(12), 1783–1789 (2008). [CrossRef]
  9. X. W. Sun, D. W. Zhao, L. Ke, A. K. K. Kyaw, G. Q. Lo, and D. L. Kwong, “Inverted tandem organic solar cells with a MoO3/Ag/Al/Ca intermediate layer,” Appl. Phys. Lett.97(5), 053303 (2010). [CrossRef]
  10. S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics3(5), 297–302 (2009). [CrossRef]
  11. A. J. Heeger, “Semiconducting polymers: the Third Generation,” Chem. Soc. Rev.39(7), 2354–2371 (2010). [CrossRef] [PubMed]
  12. A. K. K. Kyaw, X. W. Sun, C. Y. Jiang, G. Q. Lo, D. W. Zhao, and D. L. Kwong, “An inverted organic solar cell employing a sol-gel derived ZnO electron selective layer and thermal evaporated MoO3 hole selective layer,” Appl. Phys. Lett.93(22), 221107 (2008). [CrossRef]
  13. K. Takanezawa, K. Tajima, and K. Hashimoto, “Efficiency enhancement of polymer photovoltaic devices hybridized with ZnO nanorod arrays by the introduction of a vanadium oxide buffer layer,” Appl. Phys. Lett.93(6), 063308 (2008). [CrossRef]
  14. K. X. Steirer, J. P. Chesin, N. E. Widjonarko, J. J. Berry, A. Miedaner, D. S. Ginley, and D. C. Olson, “Solution deposited NiO thin-films as hole transport layers in organic photovoltaics,” Org. Electron.11(8), 1414–1418 (2010). [CrossRef]
  15. Z. Y. Hu, J. J. Zhang, Y. Liu, Y. N. Li, X. D. Zhang, and Y. Zhao, “Efficiency enhancement of inverted organic photovoltaic devices with ZnO nanopillars fabricated on FTO glass substrates,” Synth. Met.161(19-20), 2174–2178 (2011). [CrossRef]
  16. Z. F. Liu, Z. G. Jin, W. Li, and J. J. Qiu, “Preparation of ZnO porous thin films by sol-gel method using PEG template,” Mater. Lett.59(28), 3620–3625 (2005). [CrossRef]
  17. X. H. Ju, W. Feng, K. C. Varutt, T. S. Hori, A. H. Fujii, and M. N. Ozaki, “Fabrication of oriented ZnO nanopillar self-assemblies and their application for photovoltaic devices,” Nanotechnology19(43), 435706 (2008). [CrossRef] [PubMed]
  18. D. A. Rider, R. T. Tucker, B. J. Worfolk, K. M. Krause, A. Lalany, M. J. Brett, J. M. Buriak, and K. D. Harris, “Indium tin oxide nanopillar electrodes in polymer/fullerene solar cells,” Nanotechnology22(8), 085706 (2011). [CrossRef] [PubMed]
  19. D. C. Olson, L. Yun-Ju, M. S. White, N. Kopidakis, S. E. Shaheen, D. S. Ginley, J. A. Voigt, and J. W. P. Hsu, “Effect of polymer processing on the performance of poly(3-hexylthiophene)/ZnO nanorod photovoltaic devices,” J. Phys. Chem. C111(44), 16640–16645 (2007). [CrossRef]
  20. K. Takanezawa, K. Hirota, Q. S. Wei, K. Tajima, and K. Hashimoto, “Efficient charge collection with ZnO nanorod array in hybrid photovoltaic devices,” J. Phys. Chem. C111(19), 7218–7223 (2007). [CrossRef]
  21. J. Bouclé, H. J. Snaith, and N. C. Greenham, “Simple Approach to Hybrid Polymer/Porous Metal Oxide Solar Cells from Solution-Processed ZnO Nanocrystals,” J. Phys. Chem. C114(8), 3664–3674 (2010). [CrossRef]
  22. S. B. Jo, J. H. Lee, M. Sim, M. Kim, J. H. Park, Y. S. Choi, Y. Kim, S.-G. Ihn, and K. Cho, “High performance organic photovoltaic cells using polymer-hybridized ZnO nanocrystals as a cathode interlayer,” Advanced Energy Materials1(4), 690–698 (2011). [CrossRef]
  23. Y.-M. Chang and C.-Y. Leu, “Solvent extraction induced nano-porous zinc oxide as an electron transport layer for inverted polymer solar cells,” Org. Electron.13(12), 2991–2996 (2012). [CrossRef]
  24. Y. S. Hsiao, C. P. Chen, C. H. Chao, and W. T. Whang, “All-solution-processed inverted polymer solar cells on granular surface-nickelized polyimide,” Org. Electron.10(4), 551–561 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited