OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 11 — Jun. 2, 2014
  • pp: 12716–12736

Modeling a measurement-device-independent quantum key distribution system

P. Chan, J. A. Slater, I. Lucio-Martinez, A. Rubenok, and W. Tittel  »View Author Affiliations

Optics Express, Vol. 22, Issue 11, pp. 12716-12736 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (4851 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a detailed description of a widely applicable mathematical model for quantum key distribution (QKD) systems implementing the measurement-device-independent (MDI) protocol. The model is tested by comparing its predictions with data taken using a proof-of-principle, time-bin qubit-based QKD system in a secure laboratory environment (i.e. in a setting in which eavesdropping can be excluded). The good agreement between the predictions and the experimental data allows the model to be used to optimize mean photon numbers per attenuated laser pulse, which are used to encode quantum bits. This in turn allows optimization of secret key rates of existing MDI-QKD systems, identification of rate-limiting components, and projection of future performance. In addition, we also performed measurements over deployed fiber, showing that our system’s performance is not affected by environment-induced perturbations.

© 2014 Optical Society of America

OCIS Codes
(040.5570) Detectors : Quantum detectors
(060.2330) Fiber optics and optical communications : Fiber optics communications
(270.5565) Quantum optics : Quantum communications
(270.5568) Quantum optics : Quantum cryptography

ToC Category:
Quantum Optics

Original Manuscript: January 13, 2014
Revised Manuscript: March 24, 2014
Manuscript Accepted: March 25, 2014
Published: May 19, 2014

P. Chan, J. A. Slater, I. Lucio-Martinez, A. Rubenok, and W. Tittel, "Modeling a measurement-device-independent quantum key distribution system," Opt. Express 22, 12716-12736 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. Gisin, G. Ribordy, W. Tittel, H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002). [CrossRef]
  2. V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, M. Peev, “The security of practical quantum key disitrbution,” Rev. Mod. Phys. 81, 1301–1350 (2009). [CrossRef]
  3. A. Dixon, Z. L. Yuan, J. Dynes, A. W. Sharpe, A. Shields, “Continuous operation of high bit rate quantum key distribution,” Appl. Phys. Lett. 96, 161102 (2010). [CrossRef]
  4. D. Stucki, N. Walenta, F. Vannel, R. T. Thew, N. Gisin, H. Zbinden, S. Gray, C. R. Towery, S. Ten, “High rate, long-distance quantum key distribution over 250 km of ultra low loss fibres,” New J. Phys. 11, 075003 (2009). [CrossRef]
  5. T. Schmitt-Manderbach, H. Weier, M. Fürst, R. Ursin, F. Tiefenbacher, T. Scheidl, J. Perdigues, Z. Sodnik, C. Kurtsiefer, J. G. Rarity, A. Zeilinger, H. Weinfurter, “Experimental demonstration of free-space decoy-state quantum key distribution over 144 km,” Phys. Rev. Lett., 98, 010504 (2007). [CrossRef] [PubMed]
  6. L. Masanes, S. Pironio, A. Acín, “Secure device-independent quantum key distribution with causally independent measurement devices,” Nat. Commun. 2, 238 (2011). [CrossRef] [PubMed]
  7. H.-K. Lo, M. Curty, B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 108, 130503 (2012). [CrossRef] [PubMed]
  8. S. L. Braunstein, S. Pirandola, “Side-channel-free quantum key distribution,” Phys. Rev. Lett. 108, 130502 (2012). [CrossRef] [PubMed]
  9. A. Rubenok, J. A. Slater, P. Chan, I. Lucio-Martinez, W. Tittel, “Real-world two-photon interference and proof-of-principle quantum key distribution immune to detector attacks,” Phys. Rev. Lett. 111, 130501 (2013). [CrossRef] [PubMed]
  10. Y. Liu, T.-Y. Chen, L.-J. Wang, H. Liang, G.-L. Shentu, J. Wang, K. Cui, H.-L. Yin, N.-L. Liu, L. Li, X. Ma, J. S. Pelc, M. M. Fejer, Q. Zhang, J.-W. Pan, “Experimental measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 111, 130502 (2013). [CrossRef] [PubMed]
  11. T. F. da Silva, D. Vitoreti, G. B. Xavier, G. P. Temporão, J. P. von der Weid, “Proof-of-principle demonstration of measurement device independent QKD using polarization qubits,” Phys. Rev. A. 88, 052303 (2013). [CrossRef]
  12. Z. Tang, Z. Liao, F. Xu, B. Qi, L. Qian, H.-K. Lo, “Experimental demonstration of polarization encoding measurement-device-independent quantum key distribution,” arXiv:1306.6134 [quant-ph].
  13. G. Brassard, N. Lütkenhaus, T. Mor, B. Sanders, “Limitation on practical quantum cryptography,” Phys. Rev. Lett. 85, 1330 (2000). [CrossRef] [PubMed]
  14. W. Hwang, “Quantum key distribution with high loss: towards global secure communication,” Phys. Rev. Lett. 91, 057901 (2003). [CrossRef]
  15. H.-K. Lo, X. Ma, K. Chen, “Decoy state quantum key distribution,” Phys. Rev. Lett. 94, 230504 (2005). [CrossRef] [PubMed]
  16. X. Wang, “Beating the photon-number-splitting attack in practical quantum cryptography,” Phys. Rev. Lett. 94, 230503 (2005). [CrossRef] [PubMed]
  17. N. Gisin, S. Fasel, B. Kraus, H. Zbinden, G. Ribordy, “Trojan-horse attacks on quantum-key-distribution systems,” Phys. Rev. A 73, 022320 (2006). [CrossRef]
  18. C.-H. F. Fung, B. Qi, K. Tamaki, H.-K. Lo, “Phase-remapping attack in practical quantum key distribution systems,” Phys. Rev. A 75, 032314 (2007). [CrossRef]
  19. A. Lamas-Linares, C. Kurtsiefer, “Breaking a quantum key distribution system through a timing side channel,” Opt. Express 15, 9388–9393 (2007). [CrossRef] [PubMed]
  20. Y. Zhao, C.-H. F. Fung, B. Qi, C. Chen, H.-K. Lo, “Quantum hacking: experimental demonstration of time-shift attack against practical quantum key distribution systems,” Phys. Rev. A, 78, 042333 (2008). [CrossRef]
  21. L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, V. Makarov, “Thermal blinding of gated detectors in quantum cryptography,” Opt. Express 18, 27938–27954 (2010). [CrossRef]
  22. L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nat. Photonics 4, 686–689 (2010). [CrossRef]
  23. Z. L. Yuan, J. F. Dynes, A. J. Shields, “Avoiding the blinding attack in QKD,” Nat. Photonics 4, 800–801 (2010). [CrossRef]
  24. L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, V. Makarov, “Avoiding the blinding attack in QKD,” Nat. Photonics 4, 801 (2010). [CrossRef]
  25. C. Bennett, G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” Proceedings of IEEE International Conference on Computers Systems and Signal Processing, 175 (1984).
  26. X.-B. Wang, “Three-intensity decoy-state method for device-independent quantum key distribution with basis-dependent errors,” Phys. Rev. A 87, 012320 (2013). Note that we have corrected a mistake present in Eq. (17). [CrossRef]
  27. Note that a pulse does not necessarily contain one single photon. In particular, when considering attenuated light pulses, the number of photons in a pulse will, for example, follow the Poissonian distribution.
  28. F. Xu, M. Curty, B. Qi, H.-K. Lo, “Practical aspects of measurement-device-independent quantum key distribution,” New J. Phys. 15, 113007 (2013). [CrossRef]
  29. To the best of our knowledge, this assumption correctly describes all existing experimental implementations. See section 5 for more information.
  30. Note that this approximation is, in general, not correct. However, in order to obtain the best performance from a QKD implementation, the noise level should be as low as possible, i.e. Pn∼ 0.
  31. The separation of photons into genuine qubit photons and background photons is somewhat artificial – as a matter of fact, there is no way to distinguish background photons from real photons. As already stated in section 4.1, the distinction is motivated by the need to write down a general expression for all emitted single-photon qubit states using parameters that can be characterized directly through experiments (these measurements are further described below).
  32. D. Stucki, G. Ribordy, A. Stefanov, H. Zbinden, J. Rarity, T. Wall, “Photon counting for quantum key distribution with Peltier cooled InGaAs/InP APDs,” J. Mod. Opt. 48, 1967–1981 (2001). [CrossRef]
  33. C. K. Hong, Z. Y. Ou, L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044 (1987). [CrossRef] [PubMed]
  34. L. Mandel, “Photon interference and correlation effects produced by independent quantum sources,” Phys. Rev. A, 28, 929 (1983). [CrossRef]
  35. K. Tamaki, H.-K. Lo, C.-H. F. Fung, B. Qi, “Phase encoding schemes for measurement device independent quantum key distribution and basis-dependent flaw,” arxiv:1111.3413v4 (2013).
  36. M. Sasaki et al., “Field test of quantum key distribution in the Tokyo QKD network,” Opt. Express, 19, 10387–10409 (2011). [CrossRef] [PubMed]
  37. F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013). [CrossRef]
  38. For instance, EOSpace sells intensity modulators with 50 dB extinction ratio.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited