OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 11 — Jun. 2, 2014
  • pp: 12737–12749

Effective absorption enhancement in dielectric thin-films with embedded paired-strips gold nanoantennas

Zih-Ying Yang and Kuo-Ping Chen  »View Author Affiliations


Optics Express, Vol. 22, Issue 11, pp. 12737-12749 (2014)
http://dx.doi.org/10.1364/OE.22.012737


View Full Text Article

Enhanced HTML    Acrobat PDF (2667 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This study focuses on determining the optimized thickness of an absorbing thin-film with embedded gold nanoantennas, for absorption enhancement. Gold paired-strips nanoantennas with small gaps have been proposed for light trapping because of the high localized electric field in the gap due to resonance. Paired-strips nanoantennas with small gaps produce higher effective absorption compared to single-strip gratings. From the average absorption two-dimensional map, the absorption enhancement may increase by a factor of up to 20 for gold paired-strips nanoantennas embedded in a 100 nm thick P3HT:PCBM thin-film.

© 2014 Optical Society of America

OCIS Codes
(250.0250) Optoelectronics : Optoelectronics
(160.3918) Materials : Metamaterials
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Thin Films

History
Original Manuscript: February 10, 2014
Revised Manuscript: April 28, 2014
Manuscript Accepted: May 8, 2014
Published: May 19, 2014

Citation
Zih-Ying Yang and Kuo-Ping Chen, "Effective absorption enhancement in dielectric thin-films with embedded paired-strips gold nanoantennas," Opt. Express 22, 12737-12749 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-11-12737


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Dutta Choudhury, R. Badugu, K. Ray, J. R. Lakowicz, “Steering fluorescence emission with metal-dielectric-metal Structures of Au, Ag, and Al,” J. Phys. Chem. C 117(30), 15798–15807 (2013). [CrossRef]
  2. P. K. Maharana, S. Bharadwaj, R. Jha, “Electric field enhancement in surface plasmon resonance bimetallic configuration based on chalcogenide prism,” J. Appl. Phys. 114(1), 014304 (2013). [CrossRef]
  3. E. Filippo, D. Manno, A. Buccolieri, M. Di Giulio, A. Serra, “Shape-dependent plasmon resonances of Ag nanostructures,” Superlattices Microstruct. 47(1), 66–71 (2010). [CrossRef]
  4. W. S. Hwang, P. L. Truong, S. J. Sim, “Size-dependent plasmonic responses of single gold nanoparticles for analysis of biorecognition,” Anal. Biochem. 421(1), 213–218 (2012). [CrossRef] [PubMed]
  5. B. C. Galarreta, I. Rupar, A. Young, F. Lagugné-Labarthet, “Mapping hot-spots in hexagonal arrays of metallic nanotriangles with azobenzene polymer thin films,” J. Phys. Chem. C 115(31), 15318–15323 (2011). [CrossRef]
  6. M. D. Grogan, S. Heck, L. Xiao, R. England, S. Maier, T. A. Birks, “Control of nanoparticle aggregation in aerogel hosts,” J. Non-Cryst. Solids 358(2), 241–245 (2012). [CrossRef]
  7. N. N. Nedyalkov, S. E. Imamova, P. A. Atanasov, M. Obara, “Near field localization mediated by a single gold nanoparticle embedded in transparent matrix: application for surface modification,” Appl. Surf. Sci. 255(10), 5125–5129 (2009). [CrossRef]
  8. R. B. Dunbar, T. Pfadler, L. Schmidt-Mende, “Highly absorbing solar cells−a survey of plasmonic nanostructures,” Opt. Express 20(S2Suppl 2), A177–A189 (2012). [CrossRef] [PubMed]
  9. W. Challener, C. Peng, A. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009). [CrossRef]
  10. L. Pan, D. B. Bogy, “Data storage: Heat-assisted magnetic recording,” Nat. Photonics 3(4), 189–190 (2009). [CrossRef]
  11. P. K. Jain, X. Huang, I. H. El-Sayed, M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41(12), 1578–1586 (2008). [CrossRef] [PubMed]
  12. K. A. Willets, R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007). [CrossRef] [PubMed]
  13. L.-Y. Yue, P. Wang, Y.-X. Huang, “Easy method to determine refractive indices of microspheres and in micro-regions of inhomogeneous media,” Biosens. Bioelectron. 30(1), 216–222 (2011). [CrossRef] [PubMed]
  14. M. A. Green, S. Pillai, “Harnessing plasmonics for solar cells,” Nat. Photonics 6(3), 130–132 (2012). [CrossRef]
  15. N. A. Hatab, C.-H. Hsueh, A. L. Gaddis, S. T. Retterer, J.-H. Li, G. Eres, Z. Zhang, B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010). [CrossRef] [PubMed]
  16. M. Li, S. K. Cushing, J. Zhang, J. Lankford, Z. P. Aguilar, D. Ma, N. Wu, “Shape-dependent surface-enhanced Raman scattering in gold-Raman probe-silica sandwiched nanoparticles for biocompatible applications,” Nanotechnology 23(11), 115501 (2012). [CrossRef] [PubMed]
  17. J. M. McMahon, S. Li, L. K. Ausman, G. C. Schatz, “Modeling the effect of small gaps in surface-enhanced Raman spectroscopy,” J. Phys. Chem. C 116(2), 1627–1637 (2012). [CrossRef]
  18. D. K. Gramotnev, A. Pors, M. Willatzen, S. I. Bozhevolnyi, “Gap-plasmon nanoantennas and bowtie resonators,” Phys. Rev. B 85(4), 045434 (2012). [CrossRef]
  19. V. E. Ferry, M. A. Verschuuren, H. B. Li, E. Verhagen, R. J. Walters, R. E. Schropp, H. A. Atwater, A. Polman, “Plasmonic light trapping for thin film A-SI: H solar cells,” in Proceedings of Photovoltaic Specialists Conference (PVSC), (IEEE, 2010), pp. 000760–000765. [CrossRef]
  20. C. Mu, J.-P. Zhang, D. Xu, “Au nanoparticle arrays with tunable particle gaps by template-assisted electroless deposition for high performance surface-enhanced Raman scattering,” Nanotechnology 21(1), 015604 (2010). [CrossRef] [PubMed]
  21. K. Q. Costa, V. Dmitriev, “Comparative analysis of circular and triangular gold nanodisks for field enhancement applications,” J. Micro. Optoelectron. Electromagn. Appl. 9(2), 123–130 (2010). [CrossRef]
  22. T. L. dos Santos, K. Q. da Costa, and V. Dmitriev, “Comparative Near Field Analysis of Gold Nanodisks of Different Shapes,” in Latin America Optics and Photonics Conference(Optical Society of America, 2010). [CrossRef]
  23. H.-W. Cheng and Y. Li, “Simulation of Raman enhancement in SERS-active substrates with Au layer considering different geometry of nanoparticles,” in Proceedings of Computational Electronics (IWCE), (IEEE, 2010), pp. 1–4.
  24. G. Bi, W. Xiong, L. Wang, K. Ueno, H. Misawa, J.- Qiu, “Fabrication of periodical structure and shape-induced modulating spectroscopy of Au nanoparticles,” Opt. Commun. 285(9), 2472–2477 (2012). [CrossRef]
  25. R.-H. Fan, L.-H. Zhu, R.-W. Peng, X.-R. Huang, D.-X. Qi, X.-P. Ren, Q. Hu, M. Wang, “Broadband antireflection and light-trapping enhancement of plasmonic solar cells,” Phys. Rev. B 87(19), 195444 (2013). [CrossRef]
  26. V. E. Ferry, J. N. Munday, H. A. Atwater, “Design considerations for plasmonic photovoltaics,” Adv. Mater. 22(43), 4794–4808 (2010). [CrossRef] [PubMed]
  27. R. A. Pala, J. White, E. Barnard, J. Liu, M. L. Brongersma, “Design of Plasmonic Thin‐Film Solar Cells with Broadband Absorption Enhancements,” Adv. Mater. 21(34), 3504–3509 (2009). [CrossRef]
  28. W. Wang, S. Wu, K. Reinhardt, Y. Lu, S. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett. 10(6), 2012–2018 (2010). [CrossRef] [PubMed]
  29. P. B. Johnson, R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]
  30. X. Ni, Z. Liu, A. V. Kildishev, “PhotonicsDB: Optical Constants,” (2010), https://nanohub.org/resources/PhotonicsDB .
  31. S.-J. Tsai, M. Ballarotto, D. B. Romero, W. N. Herman, H.-C. Kan, R. J. Phaneuf, “Effect of gold nanopillar arrays on the absorption spectrum of a bulk heterojunction organic solar cell,” Opt. Express 18(S4Suppl 4), A528–A535 (2010). [CrossRef] [PubMed]
  32. H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010). [CrossRef] [PubMed]
  33. F. Cortés-Juan, C. C. Ramos, J. Connolly, C. David, F. G. de Abajo, J. Hurtado, V. Mihailetchi, S. Ponce-Alcántara, G. Sánchez, “Effect of Ag nanoparticles integrated within antireflection coatings for solar cells,” J. Renewable Sustainable Energy 5(3), 033116 (2013). [CrossRef]
  34. V. Gusak, B. Kasemo, C. Hägglund, “Thickness dependence of plasmonic charge carrier generation in ultrathin a-Si:H layers for solar cells,” ACS Nano 5(8), 6218–6225 (2011). [CrossRef] [PubMed]
  35. B. Johansen, C. Uhrenfeldt, A. N. Larsen, “Plasmonic properties of β-Sn Nanoparticles in ordered and disordered arrangements,” Plasmonics 8, 1–6 (2013).
  36. J. Toudert, R. Serna, M. Jiménez de Castro, “Exploring the optical potential of nano-bismuth: tunable surface plasmon resonances in the near ultraviolet-to-near infrared range,” J. Phys. Chem. C 116(38), 20530–20539 (2012). [CrossRef]
  37. O. A. Yeshchenko, I. M. Dmitruk, A. A. Alexeenko, A. V. Kotko, J. Verdal, A. O. Pinchuk, “Size and temperature effects on the surface plasmon resonance in silver nanoparticles,” Plasmonics 7(4), 685–694 (2012). [CrossRef]
  38. C. Perera, K. Vernon, “Simulation of the gap plasmon coupling with a quantum dot,” Proc. SPIE 8923, 89230Z (2013). [CrossRef]
  39. K. Q. Le, A. Abass, B. Maes, P. Bienstman, A. Alù, “Comparing plasmonic and dielectric gratings for absorption enhancement in thin-film organic solar cells,” Opt. Express 20(S1), A39–A50 (2012). [CrossRef] [PubMed]
  40. D. Qu, F. Liu, Y. Huang, W. Xie, Q. Xu, “Mechanism of optical absorption enhancement in thin film organic solar cells with plasmonic metal nanoparticles,” Opt. Express 19(24), 24795–24803 (2011). [CrossRef] [PubMed]
  41. W. Ren, G. Zhang, Y. Wu, H. Ding, Q. Shen, K. Zhang, J. Li, N. Pan, X. Wang, “Broadband absorption enhancement achieved by optical layer mediated plasmonic solar cell,” Opt. Express 19(27), 26536–26550 (2011). [CrossRef] [PubMed]
  42. F. Monestier, J.-J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, C. Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT: PCBM blend,” Sol. Energy Mater. Sol. Cells 91(5), 405–410 (2007). [CrossRef]
  43. N. N. Lal, B. F. Soares, J. K. Sinha, F. Huang, S. Mahajan, P. N. Bartlett, N. C. Greenham, J. J. Baumberg, “Enhancing solar cells with localized plasmons in nanovoids,” Opt. Express 19(12), 11256–11263 (2011). [CrossRef] [PubMed]
  44. M. Wang, C. Hu, M. Pu, C. Huang, Z. Zhao, Q. Feng, X. Luo, “Truncated spherical voids for nearly omnidirectional optical absorption,” Opt. Express 19(21), 20642–20649 (2011). [CrossRef] [PubMed]
  45. Z. Chen, L. Wang, C. Wang, Y. Zhu, “Polarization-insensitive surface plasmon resonance sensor by cross-slit metallic periodic arrays,” Optik (Stuttg.) 124(24), 6743–6745 (2013). [CrossRef]
  46. K. Aydin, V. E. Ferry, R. M. Briggs, H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat Commun 2, 517 (2011). [CrossRef] [PubMed]
  47. S. Y. Chou, W. Ding, “Ultrathin, high-efficiency, broad-band, omni-acceptance, organic solar cells enhanced by plasmonic cavity with subwavelength hole array,” Opt. Express 21(S1), A60–A76 (2013). [CrossRef] [PubMed]
  48. Y. Nishijima, L. Rosa, S. Juodkazis, “Surface plasmon resonances in periodic and random patterns of gold nano-disks for broadband light harvesting,” Opt. Express 20(10), 11466–11477 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited