OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 11 — Jun. 2, 2014
  • pp: 12773–12778

Fast feature identification for holographic tracking: the orientation alignment transform

Bhaskar Jyoti Krishnatreya and David G. Grier  »View Author Affiliations


Optics Express, Vol. 22, Issue 11, pp. 12773-12778 (2014)
http://dx.doi.org/10.1364/OE.22.012773


View Full Text Article

Enhanced HTML    Acrobat PDF (20413 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The concentric fringe patterns created by features in holograms may be associated with a complex-valued orientational order field. Convolution with an orientational alignment operator then identifies centers of symmetry that correspond to the two-dimensional positions of the features. Feature identification through orientational alignment is reminiscent of voting algorithms such as Hough transforms, but may be implemented with fast convolution methods, and so can be orders of magnitude faster.

© 2014 Optical Society of America

OCIS Codes
(100.2960) Image processing : Image analysis
(350.4990) Other areas of optics : Particles
(090.1995) Holography : Digital holography

ToC Category:
Image Processing

History
Original Manuscript: February 25, 2014
Revised Manuscript: May 5, 2014
Manuscript Accepted: May 12, 2014
Published: May 19, 2014

Citation
Bhaskar Jyoti Krishnatreya and David G. Grier, "Fast feature identification for holographic tracking: the orientation alignment transform," Opt. Express 22, 12773-12778 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-11-12773


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Sheng, E. Malkiel, J. Katz, “Digital holographic microscope for measuring three-dimensional particle distributions and motions,” Appl. Opt. 45(16), 3893–3901 (2006). [CrossRef] [PubMed]
  2. S.-H. Lee, D. G. Grier, “Holographic microscopy of holographically trapped three-dimensional structures,” Opt. Express 15, 1505–1512 (2007). [CrossRef] [PubMed]
  3. S.-H. Lee, Y. Roichman, G.-R. Yi, S.-H. Kim, S.-M. Yang, A. van Blaaderen, P. van Oostrum, D. G. Grier, “Characterizing and tracking single colloidal particles with video holographic microscopy,” Opt. Express 15, 18275–18282 (2007). [CrossRef]
  4. F. C. Cheong, K. Xiao, D. G. Grier, “Characterization of individual milk fat globules with holographic video microscopy,” J. Dairy Sci. 92, 95–99 (2009). [CrossRef]
  5. F. C. Cheong, S. Duarte, S.-H. Lee, D. G. Grier, “Holographic microrheology of polysaccharides from Streptococcus mutans biofilms,” Rheol. Acta 48, 109–115 (2009). [CrossRef]
  6. G. Bolognesi, S. Bianchi, R. Di Leonardo, “Digital holographic tracking of microprobes for multipoint viscosity measurements,” Opt. Express 19, 19245–19254 (2011). [CrossRef] [PubMed]
  7. F. C. Cheong, K. Xiao, D. J. Pine, D. G. Grier, “Holographic characterization of individual colloidal spheres’ porosities,” Soft Matter 7, 6816–6819 (2011). [CrossRef]
  8. H. Shpaisman, B. J. Krishnatreya, D. G. Grier, “Holographic microrefractometer,” Appl. Phys. Lett. 101, 091102 (2012). [CrossRef]
  9. F. C. Cheong, B. Sun, R. Dreyfus, J. Amato-Grill, K. Xiao, L. Dixon, D. G. Grier, “Flow visualization and flow cytometry with holographic video microscopy,” Opt. Express 17, 13071–13079 (2009). [CrossRef] [PubMed]
  10. L. Dixon, F. C. Cheong, D. G. Grier, “Holographic particle-streak velocimetry,” Opt. Express 19, 4393–4398 (2011). [CrossRef] [PubMed]
  11. Y. Roichman, B. Sun, A. Stolarski, D. G. Grier, “Influence of non-conservative optical forces on the dynamics of optically trapped colloidal spheres: The fountain of probability,” Phys. Rev. Lett. 101, 128301 (2008). [CrossRef]
  12. K. Xiao, D. G. Grier, “Multidimensional optical fractionation with holographic verification,” Phys. Rev. Lett. 104, 028302 (2010). [CrossRef]
  13. J. Fung, V. N. Manoharan, “Holographic measurements of anisotropic three-dimensional diffusion of colloidal clusters,” Phys. Rev. E 88, 020302 (2013). [CrossRef]
  14. J. Fung, K. E. Martin, R. W. Perry, D. M. Kaz, R. McGorty, V. N. Manoharan, “Measuring translational, rotational, and vibrational dynamics in colloids with digital holographic microscopy,” Opt. Express 19, 8051–8065 (2011). [CrossRef] [PubMed]
  15. D. H. Ballard, “Generalizing the Hough transform to detect arbitrary shapes,” Pattern Recogn. 13, 111–122 (1981). [CrossRef]
  16. C. Hollitt, “A convolution approach to the circle Hough transform for arbitrary radius,” Mach. Vision Appl. 24, 683–694 (2013). [CrossRef]
  17. J. C. Crocker, D. G. Grier, “Methods of digital video microscopy for colloidal studies,” J. Colloid Interface Sci. 179, 298–310 (1996). [CrossRef]
  18. R. Parthasarathy, “Rapid, accurate particle tracking by calculation of radial symmetry centers,” Nature Methods 9, 724–726 (2012). [CrossRef] [PubMed]
  19. B. I. Halperin, D. R. Nelson, “Theory of two-dimensional melting,” Phys. Rev. Lett. 41(2), 121–124 (1978). [CrossRef]
  20. D. R. Nelson, B. I. Halperin, “Dislocation-mediated melting in two dimensions,” Phys. Rev. B 19(5), 2457–2484 (1979). [CrossRef]
  21. J. Rubinstein, J. Segman, Y. Zeevi, “Recognition of distorted patterns by invariance kernels,” Pattern Recogn. 24, 959–967 (1991). [CrossRef]
  22. T. J. Atherton, D. J. Kerbyson, “Size invariant circle detection,” Image Vision Comput. 17, 795–803 (1999). [CrossRef]
  23. A. Savitzky, M. J. E. Golay, “Smoothing and differentionation of data by simplified least squares procedures,” Acta Crystallog. 36, 1627–1639 (1964).
  24. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003). [CrossRef] [PubMed]
  25. T. Savin, P. S. Doyle, “Role of finite exposure time on measuring an elastic modulus using microrheology,” Phys. Rev. E 71, 041106 (2005). [CrossRef]
  26. T. Savin, P. S. Doyle, “Static and dynamic errors in particle tracking microrheology,” Biophys. J. 88, 623–638 (2005). [CrossRef]
  27. B. J. Krishnatreya, A. Colen-Landy, P. Hasebe, B. A. Bell, J. R. Jones, A. Sunda-Meya, D. G. Grier, “Measuring Boltzmann’s constant through holographic video microscopy of a single sphere,” Am. J. Phys. 82, 23–31 (2014). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited