OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 11 — Jun. 2, 2014
  • pp: 12799–12807

Improved 8-channel silicon mode demultiplexer with grating polarizers

Jian Wang, Pengxin Chen, Sitao Chen, Yaocheng Shi, and Daoxin Dai  »View Author Affiliations

Optics Express, Vol. 22, Issue 11, pp. 12799-12807 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1051 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An improved 8-channel silicon mode demultiplexer is realized with TE-type and TM-type grating polarizers at the output ends, and these gratings serve as fiber-chip couplers simultaneously. The present 8-channel silicon mode demultiplexer includes a three-waveguide PBS (for separating the TE0 and TM0 modes) and six cascaded ADCs (for demultiplexing the high-order modes of both polarizations). The grating polarizers with high extinction ratios are used to filter out the polarization crosstalk in the 8-channel hybrid multiplexer efficiently and the measured crosstalk for all the mode-channels of the improved 8-channel mode multiplexer is reduced greatly to ~−20dB in a ~100nm bandwidth.

© 2014 Optical Society of America

OCIS Codes
(030.4070) Coherence and statistical optics : Modes
(060.4230) Fiber optics and optical communications : Multiplexing
(130.3120) Integrated optics : Integrated optics devices
(230.5440) Optical devices : Polarization-selective devices

ToC Category:
Integrated Optics

Original Manuscript: March 18, 2014
Revised Manuscript: May 6, 2014
Manuscript Accepted: May 11, 2014
Published: May 19, 2014

Jian Wang, Pengxin Chen, Sitao Chen, Yaocheng Shi, and Daoxin Dai, "Improved 8-channel silicon mode demultiplexer with grating polarizers," Opt. Express 22, 12799-12807 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. J. Richardson, J. M. Fini, L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photon. 7(5), 354–362 (2013). [CrossRef]
  2. J. Sakaguchi, B. Puttnam, W. Klaus, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, K. Imamura, H. Inaba, K. Mukasa, R. Sugizaki, T. Kobayashi, M. Watanabe, “305 Tb/s space division multiplexed transmission using homogeneous 19-core fiber,” J. Lightwave Technol. 31(4), 554–562 (2013). [CrossRef]
  3. K. S. Abedin, J. M. Fini, T. F. Thierry, B. Zhu, M. F. Yan, L. Bansal, F. V. Dimarcello, E. M. Monberg, D. J. DiGiovanni, “Seven-core erbium-doped double-clad fiber amplifier pumped simultaneously by side-coupled multimode fiber,” Opt. Lett. 39(4), 993–996 (2014). [CrossRef] [PubMed]
  4. S. Randel, R. Ryf, A. Sierra, P. J. Winzer, A. H. Gnauck, C. A. Bolle, R. J. Essiambre, D. W. Peckham, A. McCurdy, R. Lingle., “6×56-Gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6×6 MIMO equalization,” Opt. Express 19(17), 16697–16707 (2011). [CrossRef] [PubMed]
  5. A. M. J. Koonen, H. Chen, H. P. A. van den Boom, O. Raz, “Silicon photonic integrated mode multiplexer and demultiplexer,” IEEE Photon. Technol. Lett. 24(21), 1961–1964 (2012). [CrossRef]
  6. N. Hanzawa, K. Saitoh, T. Sakamoto, T. Matsui, K. Tsujikawa, M. Koshiba, F. Yamamoto, “Two-mode PLC-based mode multi/demultiplexer for mode and wavelength division multiplexed transmission,” Opt. Express 21(22), 25752–25760 (2013). [CrossRef] [PubMed]
  7. A. Li, J. Ye, X. Chen, and W. Shieh, “Low-loss fused mode coupler for few-mode transmission,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), OTu3G.4. [CrossRef]
  8. D. Dai, “Silicon mode-(de)multiplexer for a hybrid multiplexing system to achieve ultrahigh capacity photonic networks-on-chip with a single-wavelength-carrier light,” in Asia Communications and Photonics Conference, OSA Technical Digest (online) (Optical Society of America, 2012), ATh3B.3. [CrossRef]
  9. T. Uematsu, Y. Ishizaka, Y. Kawaguchi, K. Saitoh, M. Koshiba, “Design of a compact two-mode multi/demultiplexer consisting of multi-mode interference waveguides and a wavelength insensitive phase shifter for mode-division multiplexing transmission,” J. Lightwave Technol. 30(15), 2421–2426 (2012). [CrossRef]
  10. J. B. Driscoll, R. R. Grote, B. Souhan, J. I. Dadap, M. Lu, R. M. Osgood, “Asymmetric Y junctions in silicon waveguides for on-chip mode-division multiplexing,” Opt. Lett. 38(11), 1854–1856 (2013). [CrossRef] [PubMed]
  11. J. Xing, Z. Li, X. Xiao, J. Yu, Y. Yu, “Two-mode multiplexer and demultiplexer based on adiabatic couplers,” Opt. Lett. 38(17), 3468–3470 (2013). [CrossRef] [PubMed]
  12. D. Dai, J. Wang, Y. Shi, “Silicon mode (de)multiplexer enabling high capacity photonic networks-on-chip with a single-wavelength-carrier light,” Opt. Lett. 38(9), 1422–1424 (2013). [CrossRef] [PubMed]
  13. H. Qiu, H. Yu, T. Hu, G. Jiang, H. Shao, P. Yu, J. Yang, X. Jiang, “Silicon mode multi/demultiplexer based on multimode grating-assisted couplers,” Opt. Express 21(15), 17904–17911 (2013). [CrossRef] [PubMed]
  14. L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014). [CrossRef] [PubMed]
  15. J. Wang, S. He, D. Dai, “On-chip silicon 8-channel hybrid (de)multiplexer enabling simultaneous mode- and polarization-division-multiplexing,” Laser Photon. Rev. 8(2), L18–L22 (2014). [CrossRef]
  16. K. Rollke, W. Sohler, “Metal-clad waveguide as cutoff polarizer for integrated optics,” IEEE J. Quantum Electron. 13(4), 141–145 (1977). [CrossRef]
  17. D. Dai, Z. Wang, N. Julian, J. E. Bowers, “Compact broadband polarizer based on shallowly-etched silicon-on-insulator ridge optical waveguides,” Opt. Express 18(26), 27404–27415 (2010). [CrossRef] [PubMed]
  18. M. Z. Alam, J. S. Aitchison, M. Mojahedi, “Compact and silicon-on-insulator-compatible hybrid plasmonic TE-pass polarizer,” Opt. Lett. 37(1), 55–57 (2012). [CrossRef] [PubMed]
  19. Y. Huang, S. Zhu, H. Zhang, T. Y. Liow, G. Q. Lo, “CMOS compatible horizontal nanoplasmonic slot waveguides TE-pass polarizer on silicon-on-insulator platform,” Opt. Express 21(10), 12790–12796 (2013). [CrossRef] [PubMed]
  20. C. H. Chen, L. Pang, C. H. Tsai, U. Levy, Y. Fainman, “Compact and integrated TM-pass waveguide polarizer,” Opt. Express 13(14), 5347–5352 (2005). [CrossRef] [PubMed]
  21. S. Lin, J. Hu, K. B. Crozier, “Ultracompact, broadband slot waveguide polarization splitter,” Appl. Phys. Lett. 98(15), 151101 (2011). [CrossRef]
  22. D. Dai, Z. Wang, J. E. Bowers, “Ultrashort broadband polarization beam splitter based on an asymmetrical directional coupler,” Opt. Lett. 36(13), 2590–2592 (2011). [CrossRef] [PubMed]
  23. J. Wang, D. Liang, Y. Tang, D. Dai, J. E. Bowers, “Realization of an ultra-short silicon polarization beam splitter with an asymmetrical bent directional coupler,” Opt. Lett. 38(1), 4–6 (2013). [CrossRef] [PubMed]
  24. X. Guan, H. Wu, Y. Shi, L. Wosinski, D. Dai, “Ultracompact and broadband polarization beam splitter utilizing the evanescent coupling between a hybrid plasmonic waveguide and a silicon nanowire,” Opt. Lett. 38(16), 3005–3008 (2013). [CrossRef] [PubMed]
  25. D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006). [CrossRef]
  26. G. Roelkens, D. Van Thourhout, R. Baets, “High efficiency silicon-on-insulator grating coupler based on a poly-Silicon overlay,” Opt. Express 14(24), 11622–11630 (2006). [CrossRef] [PubMed]
  27. Y. Tang, Z. Wang, L. Wosinski, U. Westergren, S. He, “Highly efficient nonuniform grating coupler for silicon-on-insulator nanophotonic circuits,” Opt. Lett. 35(8), 1290–1292 (2010). [CrossRef] [PubMed]
  28. D. Dai, J. Wang, S. He, “Silicon multimode photonic integrated devices for on-chip mode-division- multiplexed optical interconnects,” Prog. Electromagn. Res. 143, 773–819 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited