OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 11 — Jun. 2, 2014
  • pp: 12808–12816

Bio-inspired, sub-wavelength surface structures for ultra-broadband, omni-directional anti-reflection in the mid and far IR

Federico Lora Gonzalez and Michael J. Gordon  »View Author Affiliations

Optics Express, Vol. 22, Issue 11, pp. 12808-12816 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2043 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Quasi-ordered moth-eye arrays were fabricated in Si using a colloidal lithography method to achieve highly efficient, omni-directional transmission of mid and far infrared (IR) radiation. The effect of structure height and aspect ratio on transmittance and scattering was explored experimentally and modeled quantitatively using effective medium theory. The highest aspect ratio structures (AR = 9.4) achieved peak transmittance of 98%, with >85% transmission for λ = 7-30 μm. A detailed photon balance was constructed by measuring transmission, forward scattering, specular reflection and diffuse reflection to quantify optical losses due to near-field effects. In addition, angle-dependent transmission measurements showed that moth-eye structures provide superior anti-reflective properties compared to unstructured interfaces over a wide angular range (0-60° incidence). The colloidal lithography method presented here is scalable and substrate-independent, providing a general approach to realize moth-eye structures and anti-reflection in many IR-compatible material systems.

© 2014 Optical Society of America

OCIS Codes
(310.1210) Thin films : Antireflection coatings
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Diffraction and Gratings

Original Manuscript: March 26, 2014
Revised Manuscript: May 2, 2014
Manuscript Accepted: May 3, 2014
Published: May 19, 2014

Virtual Issues
Vol. 9, Iss. 8 Virtual Journal for Biomedical Optics

Federico Lora Gonzalez and Michael J. Gordon, "Bio-inspired, sub-wavelength surface structures for ultra-broadband, omni-directional anti-reflection in the mid and far IR," Opt. Express 22, 12808-12816 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Kamizuka, T. Miyata, S. Sako, H. Imada, T. Nakamura, K. Asano, M. Uchiyama, K. Okada, T. Wada, T. Nakagawa, T. Onaka, I. Sakon, “Development of high-throughput silicon lens and grism with moth-eye antireflection structure for mid-infrared astronomy,” Proc. SPIE 8450, 845051 (2012). [CrossRef]
  2. J. Lau, J. Fowler, T. Marriage, L. Page, J. Leong, E. Wishnow, R. Henry, E. Wollack, M. Halpern, D. Marsden, G. Marsden, “Millimeter-wave antireflection coating for cryogenic silicon lenses,” Appl. Opt. 45(16), 3746–3751 (2006). [CrossRef] [PubMed]
  3. B. F. Jones, P. Plassmann, “Digital infrared thermal imaging of human skin,” IEEE Eng. Med. Biol. Mag. 21(6), 41–48 (2002). [CrossRef] [PubMed]
  4. K. A. Arpin, A. Mihi, H. T. Johnson, A. J. Baca, J. A. Rogers, J. A. Lewis, P. V. Braun, “Multidimensional architectures for functional optical devices,” Adv. Mater. 22(10), 1084–1101 (2010). [CrossRef] [PubMed]
  5. T. Glaser, A. Ihring, W. Morgenroth, N. Seifert, S. Schroter, V. Baier, “High temperature resistant antireflective moth-eye structures for infrared radiation sensors,” Microsyst. Technol. 11, 86–90 (2005).
  6. E. E. Perl, C. Lin, W. E. McMahon, D. J. Friedman, J. E. Bowers, “Ultrabroadband and wide-angle hybrid antireflection coatings with nanostructures,” IEEE J. Photovolt. 4(3), 962–967 (2014).
  7. B. Frey, D. Leviton, T. Madison, “Temperature-dependent refractive index of silicon and germanium,” Proc. SPIE 6273, 62732J (2006). [CrossRef]
  8. H. Raut, V. Ganesh, A. Nair, S. Ramakrishna, “Anti-reflective coatings: A critical, in-depth review,” Energy Environ. Sci. 4(10), 3779–3804 (2011). [CrossRef]
  9. S. Chattopadhyay, Y. F. Huang, Y. J. Jen, A. Ganguly, K. H. Chen, L. C. Chen, “Anti-reflective and photonic nanostructures,” Mater. Sci. Eng. Rep. 69(1-3), 1–35 (2010). [CrossRef]
  10. M. E. Motamedi, W. H. Southwell, W. J. Gunning, “Antireflection surfaces in silicon using binary optics technology,” Appl. Opt. 31(22), 4371–4376 (1992). [CrossRef] [PubMed]
  11. P. I. Stavroulakis, S. A. Boden, T. Johnson, D. M. Bagnall, “Suppression of backscattered diffraction from sub-wavelength ‘moth-eye’ arrays,” Opt. Express 21(1), 1–11 (2013). [CrossRef] [PubMed]
  12. F. L. Gonzalez, D. E. Morse, M. J. Gordon, “Importance of diffuse scattering phenomena in moth-eye arrays for broadband infrared applications,” Opt. Lett. 39(1), 13–16 (2014). [CrossRef] [PubMed]
  13. Y. F. Huang, S. Chattopadhyay, “Nanostructure surface design for broadband and angle-independent antireflection,” J. Nanophoton. 7(1), 073594 (2013). [CrossRef]
  14. G. Xie, G. Zhang, F. Lin, J. Zhang, Z. Liu, S. Mu, “The fabrication of subwavelength anti-reflective nanostructures using a bio-template,” Nanotechnology 19(9), 095605 (2008). [CrossRef] [PubMed]
  15. D. B. Nash, “Mid-infrared reflectance spectra (2.3-22 μm) of sulfur, gold, KBr, MgO, and halon,” Appl. Opt. 25(14), 2427–2433 (1986). [CrossRef] [PubMed]
  16. E. D. Palik, Handbook of Optical Constants of Solids (Elsevier, 1985).
  17. C. C. Katsidis, D. I. Siapkas, “General transfer-matrix method for optical multilayer systems with coherent, partially coherent, and incoherent interference,” Appl. Opt. 41(19), 3978–3987 (2002). [CrossRef] [PubMed]
  18. R. J. Collins, H. Y. Fan, “Infrared lattice absorption bands in germanium, silicon, and diamond,” Phys. Rev. 93(4), 674–678 (1954). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited