OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 11 — Jun. 2, 2014
  • pp: 12853–12860

Photonic crystal based microscale flow cytometry

Justin Stewart and Anna Pyayt  »View Author Affiliations


Optics Express, Vol. 22, Issue 11, pp. 12853-12860 (2014)
http://dx.doi.org/10.1364/OE.22.012853


View Full Text Article

Enhanced HTML    Acrobat PDF (864 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Here we propose a new design of an on-chip micro-flow cytometry based on photonic crystals. When individual cells flow tangential to the crystal surface, the transmission of the light through the photonic crystal changes depending on the presence or absence of the cells and their size and shape. This system was modeled using OptiFDTD, where transmission spectra were extracted. Initially, the potential for cell counting has been demonstrated. Then, for cells with differing shape a direct relation between signal distribution and cell shape has been found.

© 2014 Optical Society of America

OCIS Codes
(120.3890) Instrumentation, measurement, and metrology : Medical optics instrumentation
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology

ToC Category:
Photonic Crystals

History
Original Manuscript: March 10, 2014
Revised Manuscript: April 17, 2014
Manuscript Accepted: April 29, 2014
Published: May 20, 2014

Virtual Issues
Vol. 9, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Justin Stewart and Anna Pyayt, "Photonic crystal based microscale flow cytometry," Opt. Express 22, 12853-12860 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-11-12853


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. O. D. Laerum, T. Farsund, “Clinical Application of Flow Cytometry: a review,” Cytometry 2(1), 1–13 (1981). [CrossRef] [PubMed]
  2. P. Mullaney, J. Jett, “Flow Cytometry: An Overview,” Lasers Biol. Med. 34, 179–193 (1980). [CrossRef]
  3. R. Chang, “Flow cytometry’s new scalability,” BioOptics World, (2008). http://www.bioopticsworld.com/articles/print/volume-1/issue-4/features/feature-focus/flow-cytometryrsquos-new-scalability.html
  4. M. May, “Optical Diagnostics/Flow Cytometry: Advances in optical biodetection,” BioOptics World, (2013). http://www.bioopticsworld.com/articles/print/volume-6/issue-1/features/advances-in-optical-biodetection.html
  5. S. Seo, T. W. Su, D. K. Tseng, A. Erlinger, A. Ozcan, “Lensfree holographic imaging for on-chip cytometry and diagnostics,” Lab Chip 9(6), 777–787 (2009). [CrossRef] [PubMed]
  6. D. A. Ateya, J. S. Erickson, P. B. Howell, L. R. Hilliard, J. P. Golden, F. S. Ligler, “The good, the bad, and the tiny: a review of microflow cytometry,” Anal. Bioanal. Chem. 391(5), 1485–1498 (2008). [CrossRef] [PubMed]
  7. S. Y. Yang, K. Y. Lien, K. J. Huang, H. Y. Lei, G. B. Lee, “Micro flow cytometry utilizing a magnetic bead-based immunoassay for rapid virus detection,” Biosens. Bioelectron. 24(4), 855–868 (2008). [CrossRef] [PubMed]
  8. H. T. Huang, T. R. Ger, Y. H. Lin, Z. H. Wei, “Single cell detection using a magnetic zigzag nanowire biosensor,” Lab Chip 13(15), 3098–3104 (2013). [CrossRef] [PubMed]
  9. T. R. Ger, H. T. Huang, C. Y. Huang, M. F. Lai, “Single cell detection using 3D magnetic rolled-up structures,” Lab Chip 13(21), 4225–4230 (2013). [CrossRef] [PubMed]
  10. S. C. Hur, H. T. Tse, D. Di Carlo, “Sheathless inertial cell ordering for extreme throughput flow cytometry,” Lab Chip 10(3), 274–280 (2010). [CrossRef] [PubMed]
  11. G. Lee, C. Lin, G. Chang, “Micro flow cytometers with buried SU-8/SOG optical waveguides,” Sens. Actuators A Phys. 103(1-2), 165–170 (2003). [CrossRef]
  12. A. L. Pyayt, D. A. Fattal, Zh. Li, R. G. Beausoleil, “Nanoengineered optical resonance sensor for composite material refractive-index measurements,” Appl. Opt. 48(14), 2613–2618 (2009). [CrossRef] [PubMed]
  13. D. Fattal, M. Sigalas, A. L. Pyajt, Zh. Li, and R. G. Beausoleil, “Guided-mode resonance sensor with extended spatial sensitivity”, Proc. SPIE 6640, 66400M (2007).
  14. N. Watkins, B. M. Venkatesan, M. Toner, W. Rodriguez, R. Bashir, “A robust electrical microcytometer with 3-dimensional hydrofocusing,” Lab Chip 9(22), 3177–3184 (2009). [CrossRef] [PubMed]
  15. A. J. Chung, D. R. Gossett, D. Di Carlo, “Three dimensional, Sheathless, and High-Throughput Microparticle Inertial Focusing Through Geometry-Induced Secondary Flows,” Small 9(5), 685–690 (2013). [CrossRef] [PubMed]
  16. X. Xuan, J. Zhu, C. Church, “Particle focusing in microfluidic devices,” Microfluid. Nanofluid. 9(1), 1–16 (2010). [CrossRef]
  17. http://optiwave.com/category/products/component-design/optifdtd/
  18. T. Bååk, “Silicon oxynitride; a material for GRIN optics,” Appl. Opt. 21(6), 1069–1072 (1982). [CrossRef] [PubMed]
  19. G. Ghosh, “Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals,” Opt. Commun. 163(1-3), 95–102 (1999). [CrossRef]
  20. Y. L. Jin, J. Y. Chen, L. Xu, P. N. Wang, “Refractive index measurement for biomaterial samples by total internal reflection,” Phys. Med. Biol. 51(20), N371–N379 (2006). [CrossRef] [PubMed]
  21. T. R. Gregory, “The Bigger the C-Value, the Larger the Cell: Genome Size and Red Blood Cell Size in Vertebrates,” Blood Cells Mol. Dis. 27(5), 830–843 (2001). [CrossRef] [PubMed]
  22. W. Jin, Y. Wang, N. Ren, M. Bu, X. Shang, Y. Xu, Y. Chen, “Simulation of simultaneous measurement for red blood cell thickness and refractive index,” Opt. Lasers Eng. 50(2), 154–158 (2012). [CrossRef]
  23. V. Maltsev, A. Hoekstra, and M. Yurkin, “Optics of White Blood Cells: Optical Models, Simulations, and Experiments,” in Advanced Optical Flow Cytometry: Methods and Disease Diagnoses, (Academic, 2011), pp. 63–93.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited