OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 11 — Jun. 2, 2014
  • pp: 12880–12889

Passive mode locking of ytterbium- and erbium-doped all-fiber lasers using graphene oxide saturable absorbers

Hou-Ren Chen, Chih-Ya Tsai, Hsin-Ming Cheng, Kuei-Huei Lin, and Wen-Feng Hsieh  »View Author Affiliations

Optics Express, Vol. 22, Issue 11, pp. 12880-12889 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (716 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Broadband graphene oxide/PVA films were used as saturable absorbers (SAs) for mode locking erbium-doped fiber laser (EDFL) and ytterbium-doped fiber laser (YDFL) at 1.06 μm and 1.55 μm. They provide modulation depths of 3.15% and 6.2% for EDFL and YDFL, respectively. Stable self-starting mode-locked pulses are obtained for both lasers, confirming that the graphene oxide is cost-effective. We have generated mode-locked pulses with spectral width, repetition rate, and pulse duration of 0.75 nm, 9.5 MHz, and 2.7 ps. This is the shortest pulse duration directly obtained from an all-normal-dispersion YDFL with graphene-oxide saturable absorber.

© 2014 Optical Society of America

OCIS Codes
(140.3500) Lasers and laser optics : Lasers, erbium
(140.3510) Lasers and laser optics : Lasers, fiber
(140.4050) Lasers and laser optics : Mode-locked lasers
(160.4330) Materials : Nonlinear optical materials
(140.3615) Lasers and laser optics : Lasers, ytterbium

ToC Category:
Lasers and Laser Optics

Original Manuscript: March 26, 2014
Revised Manuscript: May 3, 2014
Manuscript Accepted: May 8, 2014
Published: May 20, 2014

Hou-Ren Chen, Chih-Ya Tsai, Hsin-Ming Cheng, Kuei-Huei Lin, and Wen-Feng Hsieh, "Passive mode locking of ytterbium- and erbium-doped all-fiber lasers using graphene oxide saturable absorbers," Opt. Express 22, 12880-12889 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, J. A. derAu, “Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996). [CrossRef]
  2. H. R. Chen, J. H. Lin, K. T. Song, K. H. Lin, W. F. Hsieh, “Passive mode-locking in diode-pumped c-cut Nd:LuVO4 laser with a semiconductor saturable-absorber mirror, ” Appl. Phys. B. 96(1), 19–23 (2009). [CrossRef]
  3. S. Y. Set, H. Yaguchi, Y. Tanaka, M. Jablonski, “Laser mode locking using a saturable absorber incorporating carbon nanotubes,” J. Lightwave Technol. 22(1), 51–56 (2004). [CrossRef]
  4. F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3(12), 738–742 (2008). [CrossRef] [PubMed]
  5. J. C. Chiu, C. M. Chang, B. Z. Hsieh, S. C. Lin, C. Y. Yeh, G. R. Lin, C. K. Lee, J. J. Lin, W. H. Cheng, “Pulse shortening mode-locked fiber laser by thickness and concentration product of carbon nanotube based saturable absorber,” Opt. Express 19(5), 4036–4041 (2011). [CrossRef] [PubMed]
  6. J. C. Chiu, Y. F. Lan, C. M. Chang, X. Z. Chen, C. Y. Yeh, C. K. Lee, G. R. Lin, J. J. Lin, W. H. Cheng, “Concentration effect of carbon nanotube based saturable absorber on stabilizing and shortening mode-locked pulse,” Opt. Express 18(4), 3592–3600 (2010). [CrossRef] [PubMed]
  7. F. Shohda, M. Nakazawa, J. Mata, J. Tsukamoto, “A 113 fs fiber laser operating at 1.56 mum using a cascadable film-type saturable absorber with P3HT-incorporated single-wall carbon nanotubes coated on polyamide,” Opt. Express 18(9), 9712–9721 (2010). [CrossRef] [PubMed]
  8. J. C. Travers, J. Morgenweg, E. D. Obraztsova, A. I. Chernov, E. J. R. Kelleher, S. V. Popov, “Using the E-22 transition of carbon nanotubes for fiber laser mode-locking,” Laser Phys. Lett. 8(2), 144–149 (2011). [CrossRef]
  9. Z. Sun, T. Hasan, A. C. Ferrari, “Ultrafast lasers mode-locked by nanotubes and graphene,” Physica E 44(6), 1082–1091 (2012). [CrossRef]
  10. A. Martinez, Z. P. Sun, “Nanotube and graphene saturable absorbers for fibre lasers,” Nat. Photonics 7(11), 842–845 (2013). [CrossRef]
  11. M. A. Solodyankin, E. D. Obraztsova, A. S. Lobach, A. I. Chernov, A. V. Tausenev, V. I. Konov, E. M. Dianov, “Mode-locked 1.93 microm thulium fiber laser with a carbon nanotube absorber,” Opt. Lett. 33(12), 1336–1338 (2008). [CrossRef] [PubMed]
  12. W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, U. Griebner, V. Petrov, F. Rotermund, “Mode-locked self-starting Cr:forsterite laser using a single-walled carbon nanotube saturable absorber,” Opt. Lett. 33(21), 2449–2451 (2008). [CrossRef] [PubMed]
  13. W. B. Cho, A. Schmidt, J. H. Yim, S. Y. Choi, S. Lee, F. Rotermund, U. Griebner, G. Steinmeyer, V. Petrov, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, F. Díaz, “Passive mode-locking of a Tm-doped bulk laser near 2 microm using a carbon nanotube saturable absorber,” Opt. Express 17(13), 11007–11012 (2009). [CrossRef] [PubMed]
  14. H. R. Chen, Y. G. Wang, C. Y. Tsai, K. H. Lin, T. Y. Chang, J. Tang, W. F. Hsieh, “High-power, passively mode-locked Nd:GdVO₄ laser using single-walled carbon nanotubes as saturable absorber,” Opt. Lett. 36(7), 1284–1286 (2011). [CrossRef] [PubMed]
  15. H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, Y. Achiba, “Optical properties of single-wall carbon nanotubes,” Synth. Met. 103(1-3), 2555–2558 (1999). [CrossRef]
  16. P. Avouris, M. Freitag, “Graphene Photonics, Plasmonics, and Optoelectronics,” IEEE J. Sel. Top. Quantum Electron. 20(1), 600112 (2014). [CrossRef]
  17. F. Bonaccorso, Z. Sun, T. Hasan, A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010). [CrossRef]
  18. T. Hasan, Z. P. Sun, F. Q. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, A. C. Ferrari, “Nanotube-Polymer Composites for Ultrafast Photonics,” Adv. Mater. 21(38–39), 3874–3899 (2009). [CrossRef]
  19. Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, D. Y. Tang, “Atomic-Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009). [CrossRef]
  20. I. H. Baek, H. W. Lee, S. Bae, B. H. Hong, Y. H. Ahn, D. I. Yeom, F. Rotermund, “Efficient Mode-Locking of Sub-70-fs Ti: Sapphire Laser by Graphene Saturable Absorber,” Appl. Phys. Express 5(3), 032701 (2012). [CrossRef]
  21. C. A. Zaugg, Z. Sun, V. J. Wittwer, D. Popa, S. Milana, T. S. Kulmala, R. S. Sundaram, M. Mangold, O. D. Sieber, M. Golling, Y. Lee, J. H. Ahn, A. C. Ferrari, U. Keller, “Ultrafast and widely tuneable vertical-external-cavity surface-emitting laser, mode-locked by a graphene-integrated distributed Bragg reflector,” Opt. Express 21(25), 31548–31559 (2013). [CrossRef] [PubMed]
  22. W. D. Tan, C. Y. Su, R. J. Knize, G. Q. Xie, L. J. Li, D. Y. Tang, “Mode locking of ceramic Nd:yttrium aluminum garnet with graphene as a saturable absorber,” Appl. Phys. Lett. 96(3), 031106 (2010). [CrossRef]
  23. Z. Q. Luo, Y. Z. Huang, J. Z. Wang, H. H. Cheng, Z. P. Cai, C. C. Ye, “Multiwavelength Dissipative-Soliton Generation in Yb-Fiber Laser Using Graphene-Deposited Fiber-Taper,” IEEE Photon. Technol. Lett. 24(17), 1539–1542 (2012). [CrossRef]
  24. R. Mary, G. Brown, S. J. Beecher, F. Torrisi, S. Milana, D. Popa, T. Hasan, Z. P. Sun, E. Lidorikis, S. Ohara, A. C. Ferrari, A. K. Kar, “1.5 GHz picosecond pulse generation from a monolithic waveguide laser with a graphene-film saturable output coupler,” Opt. Express 21(7), 7943–7950 (2013). [CrossRef] [PubMed]
  25. E. Ugolotti, A. Schmidt, V. Petrov, J. W. Kim, D. I. Yeom, F. Rotermund, S. Bae, B. H. Hong, A. Agnesi, C. Fiebig, G. Erbert, X. Mateos, M. Aguilo, F. Diaz, U. Griebner, “Graphene mode-locked femtosecond Yb:KLuW laser,” Appl. Phys. Lett. 101(16), 161112 (2012). [CrossRef]
  26. W. B. Cho, J. W. Kim, H. W. Lee, S. Bae, B. H. Hong, S. Y. Choi, I. H. Baek, K. Kim, D.-I. Yeom, F. Rotermund, “High-quality, large-area monolayer graphene for efficient bulk laser mode-locking near 1.25 μm,” Opt. Lett. 36(20), 4089–4091 (2011). [CrossRef] [PubMed]
  27. H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, K. P. Loh, “Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene,” Opt. Express 17(20), 17630–17635 (2009). [CrossRef] [PubMed]
  28. Z. P. Sun, D. Popa, T. Hasan, F. Torrisi, F. Q. Wang, E. J. R. Kelleher, J. C. Travers, V. Nicolosi, A. C. Ferrari, “A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser,” Nano Res. 3(9), 653–660 (2010). [CrossRef]
  29. D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett. 97, 203106 (2010).
  30. Y. M. Chang, H. Kim, J. H. Lee, Y.-W. Song, “Multilayered graphene efficiently formed by mechanical exfoliation for nonlinear saturable absorbers in fiber mode-locked lasers,” Appl. Phys. Lett. 97(21), 211102 (2010). [CrossRef]
  31. A. A. Lagatsky, Z. Sun, T. S. Kulmala, R. S. Sundaram, S. Milana, F. Torrisi, O. L. Antipov, Y. Lee, J. H. Ahn, C. T. A. Brown, W. Sibbett, A. C. Ferrari, “2 μm solid-state laser mode-locked by single-layer graphene,” Appl. Phys. Lett. 102(1), 013113 (2013). [CrossRef]
  32. M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A. C. Ferrari, S. V. Popov, J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene-polymer composite,” Opt. Express 20(22), 25077–25084 (2012). [CrossRef] [PubMed]
  33. M. N. Cizmeciyan, J. W. Kim, S. Bae, B. H. Hong, F. Rotermund, A. Sennaroglu, “Graphene mode-locked femtosecond Cr:ZnSe laser at 2500 nm,” Opt. Lett. 38(3), 341–343 (2013). [CrossRef] [PubMed]
  34. D. Popa, Z. Sun, T. Hasan, F. Torrisi, F. Wang, A. C. Ferrari, “Graphene Q-switched, tunable fiber laser,” Appl. Phys. Lett. 98(7), 073106 (2011). [CrossRef]
  35. Y. H. Bo Fu, Yi Hua, Xiaosheng Xiao, Hongwei Zhu, Zhipei Sun, Changxi Yang, “Broadband Graphene Saturable Absorber for Pulsed Fiber Lasers at 1, 1.5, and 2 μm,” IEEE J. Sel. Top. Quantum Electron. 20(5), 110705 (2014). [CrossRef]
  36. F. Bonaccorso, Z. P. Sun, “Solution processing of graphene, topological insulators and other 2d crystals for ultrafast photonics,” Opt. Mater. Express 4(1), 63–78 (2014). [CrossRef]
  37. J. Xu, J. Liu, S. D. Wu, Q. H. Yang, P. Wang, “Graphene oxide mode-locked femtosecond erbium-doped fiber lasers,” Opt. Express 20(14), 15474–15480 (2012). [CrossRef] [PubMed]
  38. A. Reina, X. T. Jia, J. Ho, D. Nezich, H. B. Son, V. Bulovic, M. S. Dresselhaus, J. Kong, “Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition,” Nano Lett. 9(1), 30–35 (2009). [CrossRef] [PubMed]
  39. S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon 45(7), 1558–1565 (2007). [CrossRef]
  40. Y. Shen, S. B. Yang, P. Zhou, Q. Q. Sun, P. F. Wang, L. Wan, J. Li, L. Y. Chen, X. B. Wang, S. J. Ding, D. W. Zhang, “Evolution of the band-gap and optical properties of graphene oxide with controllable reduction level,” Carbon 62, 157–164 (2013). [CrossRef]
  41. X. Zhao, Z. B. Liu, W. B. Yan, Y. P. Wu, X. L. Zhang, Y. S. Chen, J. G. Tian, “Ultrafast carrier dynamics and saturable absorption of solution-processable few-layered graphene oxide,” Appl. Phys. Lett. 98(12), 121905 (2011). [CrossRef]
  42. K. P. Loh, Q. L. Bao, G. Eda, M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem. 2(12), 1015–1024 (2010). [CrossRef] [PubMed]
  43. G. Sobon, J. Sotor, J. Jagiello, R. Kozinski, M. Zdrojek, M. Holdynski, P. Paletko, J. Boguslawski, L. Lipinska, K. M. Abramski, “Graphene Oxide vs. Reduced Graphene Oxide as saturable absorbers for Er-doped passively mode-locked fiber laser,” Opt. Express 20(17), 19463–19473 (2012). [CrossRef] [PubMed]
  44. Y. G. Wang, H. R. Chen, W. F. Hsieh, Y. H. Tsang, “Mode-locked Nd: GdVO4 laser with graphene oxide/polyvinyl alcohol composite material absorber as well as an output coupler,” Opt. Commun. 289, 119–122 (2013). [CrossRef]
  45. Y. G. Wang, Z. S. Qu, J. Liu, Y. H. Tsang, “Graphene Oxide Absorbers for Watt-Level High-Power Passive Mode-Locked Nd:GdVO4 Laser Operating at 1 μm,” J. Lightwave Technol. 30(20), 3259–3262 (2012). [CrossRef]
  46. X. H. Li, Y. G. Wang, Y. S. Wang, Y. Z. Zhang, K. Wu, P. P. Shum, X. Yu, Y. Zhang, Q. J. Wang, “All-normal-dispersion passively mode-locked Yb-doped fiber ring laser based on a graphene oxide saturable absorber,” Laser Phys. Lett. 10(7), 075108 (2013). [CrossRef]
  47. Z. B. Liu, X. Y. He, D. N. Wang, “Passively mode-locked fiber laser based on a hollow-core photonic crystal fiber filled with few-layered graphene oxide solution,” Opt. Lett. 36(16), 3024–3026 (2011). [CrossRef] [PubMed]
  48. M. Jung, J. Koo, P. Debnath, Y. W. Song, J. H. Lee, “A Mode-Locked 1.91 μm Fiber Laser Based on Interaction between Graphene Oxide and Evanescent Field,” Appl. Phys. Express 5(11), 112702 (2012). [CrossRef]
  49. Y. G. Wang, H. R. Chen, X. M. Wen, W. F. Hsieh, J. Tang, “A highly efficient graphene oxide absorber for Q-switched Nd:GdVO4 lasers,” Nanotechnology 22(45), 455203 (2011). [CrossRef] [PubMed]
  50. G. Eda, M. Chhowalla, “Chemically Derived Graphene Oxide: Towards Large-Area Thin-Film Electronics and Optoelectronics,” Adv. Mater. 22(22), 2392–2415 (2010). [CrossRef] [PubMed]
  51. S. Davide Di Dio Cafiso, E. Ugolotti, A. Schmidt, V. Petrov, U. Griebner, A. Agnesi, W. B. Cho, B. H. Jung, F. Rotermund, S. Bae, B. H. Hong, G. Reali, F. Pirzio, “Sub-100-fs Cr:YAG laser mode-locked by monolayer graphene saturable absorber,” Opt. Lett. 38(10), 1745–1747 (2013). [CrossRef] [PubMed]
  52. M. L. Dennis, I. N. Duling, “Experimental Study of Sideband Generation in Femtosecond Fiber Lasers,” IEEE J. Quantum Electron. 30(6), 1469–1477 (1994). [CrossRef]
  53. A. Chong, J. Buckley, W. Renninger, F. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express 14(21), 10095–10100 (2006). [CrossRef] [PubMed]
  54. A. Chong, W. H. Renninger, F. W. Wise, “Properties of normal-dispersion femtosecond fiber lasers,” J. Opt. Soc. Am. B 25(2), 140–148 (2008). [CrossRef]
  55. K. Ozgören, F. O. Ilday, “All-fiber all-normal dispersion laser with a fiber-based Lyot filter,” Opt. Lett. 35(8), 1296–1298 (2010). [CrossRef] [PubMed]
  56. L. M. Zhao, D. Y. Tang, X. A. Wu, H. Zhang, “Dissipative soliton generation in Yb-fiber laser with an invisible intracavity bandpass filter,” Opt. Lett. 35(16), 2756–2758 (2010). [CrossRef] [PubMed]
  57. Z. Sun, A. G. Rozhin, F. Wang, T. Hasan, D. Popa, W. O’Neill, A. C. Ferrari, “A compact, high power, ultrafast laser mode-locked by carbon nanotubes,” Appl. Phys. Lett. 95(25), 253102 (2009). [CrossRef]
  58. M. E. V. Pedersen, E. J. R. Kelleher, J. C. Travers, Z. Sun, T. Hasan, A. C. Ferrari, S. V. Popov, J. R. Taylor, “Stable Gain-Guided Soliton Propagation in a Polarized Yb-Doped Mode-Locked Fiber Laser,” IEEE Photonics J. 4(3), 1058–1064 (2012). [CrossRef]
  59. X. L. Tian, M. Tang, P. P. Shum, Y. D. Gong, C. L. Lin, S. N. Fu, T. S. Zhang, “High-energy laser pulse with a submegahertz repetition rate from a passively mode-locked fiber laser,” Opt. Lett. 34(9), 1432–1434 (2009). [CrossRef] [PubMed]
  60. Y. S. Fedotov, S. M. Kobtsev, R. N. Arif, A. G. Rozhin, C. Mou, S. K. Turitsyn, “Spectrum-, pulsewidth-, and wavelength-switchable all-fiber mode-locked Yb laser with fiber based birefringent filter,” Opt. Express 20(16), 17797–17805 (2012). [CrossRef] [PubMed]
  61. Z. X. Zhang, Z. W. Xu, L. Zhang, “Tunable and switchable dual-wavelength dissipative soliton generation in an all-normal-dispersion Yb-doped fiber laser with birefringence fiber filter,” Opt. Express 20(24), 26736–26742 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited