OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 11 — Jun. 2, 2014
  • pp: 12890–12899

Super-resolution coherent anti-Stokes Raman scattering microscopy with photonic nanojets

Paul Kumar Upputuri, Zhe Wu, Li Gong, Chong Kim Ong, and Haifeng Wang  »View Author Affiliations


Optics Express, Vol. 22, Issue 11, pp. 12890-12899 (2014)
http://dx.doi.org/10.1364/OE.22.012890


View Full Text Article

Enhanced HTML    Acrobat PDF (2903 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate far-field super-resolution coherent anti-Stokes Raman scattering (CARS) microscopy by exciting the sample with photonic nanojets. The sub-diffraction photonic nanojets were formed on the surface of the sample by microspheres illuminated by laser beams, and images were acquired by a standard laser-scanning CARS microscope. When the laser beams were focused on the microspheres, the photonic nanojets determined the excitation volume instead of the diffraction-limited laser foci, leading to super-resolution. We imaged the sub-diffraction features of a Blu-ray disc using glass spheres with a refractive index of 1.46 and diameters in the 1-6 µm range. The microspheres provided a lateral magnification factor up to 5.0X and a lateral resolution of at least 200 nm at 796 nm laser wavelength, allowing us to resolve the features on the disc which were invisible under normal CARS imaging. The magnification factor depended on both the microsphere size and the focal plane position of the incident beams. To explain the magnification factor we performed theoretical simulations which showed excellent agreement with experimental results. This super-resolution technique could be very useful for the vibrational imaging of nano-scale objects on films and surfaces.

© 2014 Optical Society of America

OCIS Codes
(300.6230) Spectroscopy : Spectroscopy, coherent anti-Stokes Raman scattering
(180.4315) Microscopy : Nonlinear microscopy
(180.5655) Microscopy : Raman microscopy

ToC Category:
Microscopy

History
Original Manuscript: March 28, 2014
Revised Manuscript: April 26, 2014
Manuscript Accepted: May 16, 2014
Published: May 20, 2014

Virtual Issues
Vol. 9, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Paul Kumar Upputuri, Zhe Wu, Li Gong, Chong Kim Ong, and Haifeng Wang, "Super-resolution coherent anti-Stokes Raman scattering microscopy with photonic nanojets," Opt. Express 22, 12890-12899 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-11-12890


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J.-X. Cheng, X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications,” J. Phys. Chem. B 108(3), 827–840 (2004). [CrossRef]
  2. A. Volkmer, J.-X. Cheng, X. S. Xie, “Vibrational imaging with high sensitivity via epidetected coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. Lett. 87(2), 023901 (2001). [CrossRef]
  3. H. Wang, Y. Fu, P. Zickmund, R. Shi, J.-X. Cheng, “Coherent anti-stokes Raman scattering imaging of axonal myelin in live spinal tissues,” Biophys. J. 89(1), 581–591 (2005). [CrossRef] [PubMed]
  4. P. K. Upputuri, J. Lin, L. Gong, X.-Y. Liu, H. Wang, Z. Huang, “Circularly polarized coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 38(8), 1262–1264 (2013). [CrossRef] [PubMed]
  5. Y. Fu, T. B. Huff, H.-W. Wang, H. Wang, J.-X. Cheng, “Ex vivo and in vivo imaging of myelin fibers in mouse brain by coherent anti-Stokes Raman scattering microscopy,” Opt. Express 16(24), 19396–19409 (2008). [CrossRef] [PubMed]
  6. T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, S. Kawata, “Tip-enhanced coherent anti-stokes Raman scattering for vibrational nanoimaging,” Phys. Rev. Lett. 92(22), 220801 (2004). [CrossRef] [PubMed]
  7. J. Lin, K. Z. J. Er, W. Zheng, Z. Huang, “Radially polarized tip-enhanced near-field coherent anti-Stokes Raman scattering microscopy for vibrational nano-imaging,” Appl. Phys. Lett. 103(8), 083705 (2013). [CrossRef]
  8. J.-X. Cheng, A. Volkmer, X. S. Xie, “Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy,” J. Opt. Soc. Am. B 19(6), 1363–1375 (2002). [CrossRef]
  9. W. P. Beeker, P. Groß, C. J. Lee, C. Cleff, H. L. Offerhaus, C. Fallnich, J. L. Herek, K.-J. Boller, “A route to sub-diffraction-limited CARS microscopy,” Opt. Express 17(25), 22632–22638 (2009). [CrossRef] [PubMed]
  10. A. Nikolaenko, V. V. Krishnamachari, E. O. Potma, “Interferometric switching of coherent anti-Stokes Raman scattering signals in microscopy,” Phys. Rev. A 79(1), 013823 (2009). [CrossRef] [PubMed]
  11. K. M. Hajek, B. Littleton, D. Turk, T. J. McIntyre, H. Rubinsztein-Dunlop, “A method for achieving super-resolved widefield CARS microscopy,” Opt. Express 18(18), 19263–19272 (2010). [CrossRef] [PubMed]
  12. I. Toytman, D. Simanovskii, D. Palanker, “On illumination schemes for wide-field CARS microscopy,” Opt. Express 17(9), 7339–7347 (2009). [CrossRef] [PubMed]
  13. R. D. Schaller, J. Ziegelbauer, L. F. Lee, L. H. Haber, R. J. Saykally, “Chemically selective imaging of subcellular structure in human hepatocytes with coherent anti-Stokes Raman scattering (CARS) near-field scanning optical microscopy (NSOM),” J. Phys. Chem. B 106(34), 8489–8492 (2002). [CrossRef]
  14. K. Furusawa, N. Hayazawa, F. C. Catalan, T. Okamoto, S. Kawata, “Tip-enhanced broadband CARS spectroscopy and imaging using a photonic crystal fiber based broadband light source,” J. Raman Spectrosc. 43(5), 656–661 (2012). [CrossRef]
  15. A. Gasecka, A. Daradich, H. Dehez, M. Piché, D. Côté, “Resolution and contrast enhancement in coherent anti-Stokes Raman-scattering microscopy,” Opt. Lett. 38(21), 4510–4513 (2013). [CrossRef] [PubMed]
  16. Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011). [CrossRef] [PubMed]
  17. X. Hao, C. Kuang, X. Liu, H. Zhang, Y. Li, “Microsphere based microscope with optical super-resolution capability,” Appl. Phys. Lett. 99(20), 203102 (2011). [CrossRef]
  18. A. Darafsheh, G. F. Walsh, L. Dal Negro, V. N. Astratov, “Optical super-resolution by high-index liquid-immersed microspheres,” Appl. Phys. Lett. 101(14), 141128 (2012). [CrossRef]
  19. S. Lee, L. Li, Y. Ben-Aryeh, Z. Wang, W. Guo, “Overcoming the diffraction limit induced by microsphere optical nanoscopy,” J. Opt. 15(12), 125710 (2013). [CrossRef]
  20. Z. Chen, A. Taflove, V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique,” Opt. Express 12(7), 1214–1220 (2004). [CrossRef] [PubMed]
  21. X. Huang, X. N. He, W. Xiong, Y. Gao, L. J. Jiang, L. Liu, Y. S. Zhou, L. Jiang, J. F. Silvain, Y. F. Lu, “Contrast enhancement using silica microspheres in coherent anti-Stokes Raman spectroscopic imaging,” Opt. Express 22(3), 2889–2896 (2014). [CrossRef] [PubMed]
  22. X. Li, Z. Chen, A. Taflove, V. Backman, “Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets,” Opt. Express 13(2), 526–533 (2005). [CrossRef] [PubMed]
  23. Y. Wu, F. Huang, D. Gu, F. Gan, “Organic materials for recordable blue laser optical storage,” Proc. SPIE 5966, 59661E (2005). [CrossRef]
  24. H. Kubo, “Optical disc and optical recording method,” E. P. Patent 1860656 A1 (2007).
  25. S. K. Lin, I. C. Lin, D. P. Tsai, “Characterization of nano recorded marks at different writing strategies on phase-change recording layer of optical disks,” Opt. Express 14(10), 4452–4458 (2006). [CrossRef] [PubMed]
  26. G. Socrates, Infrared and Raman Characteristic Group Frequencies (John Wiley, 2001).
  27. A. Devilez, N. Bonod, J. Wenger, D. Gérard, B. Stout, H. Rigneault, E. Popov, “Three-dimensional subwavelength confinement of light with dielectric microspheres,” Opt. Express 17(4), 2089–2094 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited