OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 11 — Jun. 2, 2014
  • pp: 12900–12908

Efficient lasing in continuous wave and graphene Q-switched regimes from Nd:YAG ridge waveguides produced by combination of swift heavy ion irradiation and femtosecond laser ablation

Yuechen Jia, Yang Tan, Chen Cheng, Javier R. Vázquez de Aldana, and Feng Chen  »View Author Affiliations


Optics Express, Vol. 22, Issue 11, pp. 12900-12908 (2014)
http://dx.doi.org/10.1364/OE.22.012900


View Full Text Article

Enhanced HTML    Acrobat PDF (1205 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the continuous wave and passively Q-switched lasers in Nd:YAG ridge waveguides fabricated by a combination of swift Kr ion irradiation and femtosecond laser ablation. Owing to the deep penetration length (~50 μm) of 670 MeV Kr8+ ions into the crystal, ridge waveguides with large-area cross section, supporting nearly symmetric guiding modes, were produced. Continuous wave lasers with maximum 182 mW output power at ~1064 nm have been realized at 808-nm optical pump. Using graphene as a saturable absorber, passively Q-switched waveguide laser operations were achieved. The pulsed laser produces 90 ns pulses, with a ~4.2 MHz repetition rate, 19% slope efficiency and 110 mW average output power, corresponding to single-pulse energy of 26.5 nJ.

© 2014 Optical Society of America

OCIS Codes
(140.3540) Lasers and laser optics : Lasers, Q-switched
(160.3380) Materials : Laser materials
(230.7370) Optical devices : Waveguides

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: April 3, 2014
Revised Manuscript: May 9, 2014
Manuscript Accepted: May 13, 2014
Published: May 20, 2014

Citation
Yuechen Jia, Yang Tan, Chen Cheng, Javier R. Vázquez de Aldana, and Feng Chen, "Efficient lasing in continuous wave and graphene Q-switched regimes from Nd:YAG ridge waveguides produced by combination of swift heavy ion irradiation and femtosecond laser ablation," Opt. Express 22, 12900-12908 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-11-12900


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. N. Billeh, M. Liu, T. Buma, “Spectroscopic photoacoustic microscopy using a photonic crystal fiber supercontinuum source,” Opt. Express 18(18), 18519–18524 (2010). [CrossRef] [PubMed]
  2. D. Bauer, I. Zawischa, D. H. Sutter, A. Killi, T. Dekorsy, “Mode-locked Yb:YAG thin-disk oscillator with 41 µJ pulse energy at 145 W average infrared power and high power frequency conversion,” Opt. Express 20(9), 9698–9704 (2012). [CrossRef] [PubMed]
  3. R. Osellame, G. Cerullo, and R. Ramponi, Femtosecond Laser Micromachining: Photonic and Microfluidic Devices in Transparent Materials (Springer-Verlag, 2012).
  4. J. Liu, J. Dai, S. L. Chin, X. C. Zhang, “Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases,” Nat. Photonics 4(9), 627–631 (2010). [CrossRef]
  5. W. J. Cao, H. Y. Wang, A. P. Luo, Z. C. Luo, W. C. Xu, “Graphene-based, 50 nm wide-band tunable passively Q-switched fiber laser,” Laser Phys. Lett. 9(1), 54–58 (2012). [CrossRef]
  6. V. K. Singh, A. K. Rai, “Prospects for laser-induced breakdown spectroscopy for biomedical applications: a review,” Lasers Med. Sci. 26(5), 673–687 (2011). [CrossRef] [PubMed]
  7. M. Laroche, A. M. Chardon, J. Nilsson, D. P. Shepherd, W. A. Clarkson, S. Girard, R. Moncorgé, “Compact diode-pumped passively Q-switched tunable Er-Yb double-clad fiber laser,” Opt. Lett. 27(22), 1980–1982 (2002). [CrossRef] [PubMed]
  8. J. H. Lin, K. H. Lin, H. H. Hsu, W. F. Hsieh, “Q-switched and mode-locked pulses generation in Nd:GdVO4 laser with dual loss-modulation mechanism,” Laser Phys. Lett. 5(4), 276–280 (2008). [CrossRef]
  9. S. V. Garnov, S. A. Solokhin, E. D. Pbraztsova, A. S. Lobach, P. A. Obraztsov, A. I. Chernov, V. V. Bukin, A. A. Sirotkin, Y. D. Zagumennyi, Y. D. Zavartsev, S. A. Kutovoi, I. A. Shcherbakov, “Passive mode-locking with carbon nanotube saturable absorber in Nd:GdVO4 and Nd:Y0.9Gd0.1VO4 lasers operating at 1.34 μm,” Laser Phys. Lett. 4(9), 648–651 (2007). [CrossRef]
  10. U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003). [CrossRef] [PubMed]
  11. Z. Luo, M. Zhou, J. Weng, G. Huang, H. Xu, C. Ye, Z. Cai, “Graphene-based passively Q-switched dual-wavelength erbium-doped fiber laser,” Opt. Lett. 35(21), 3709–3711 (2010). [CrossRef] [PubMed]
  12. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004). [CrossRef] [PubMed]
  13. Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009). [CrossRef]
  14. F. Bonaccorso, Z. Sun, T. Hasan, A. C. Ferrari, “Graphene Photonics and Optoelectronics,” Nat. Photonics 4(9), 611–622 (2010). [CrossRef]
  15. Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. Kelleher, J. Travers, V. Nicolosi, A. Ferrari, “A stable,wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser,” Nano Res. 3(9), 653–660 (2010). [CrossRef]
  16. H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, K. P. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95(14), 141103 (2009). [CrossRef]
  17. H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, K. P. Loh, “Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene,” Opt. Express 17(20), 17630–17635 (2009). [CrossRef] [PubMed]
  18. Y. W. Song, S. Y. Jang, W. S. Han, M. K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett. 96(5), 051122 (2010). [CrossRef]
  19. J. I. Mackenzie, “Dielectric solid-state planar waveguide lasers: a review,” IEEE J. Sel. Top. Quantum Electron. 13(3), 626–637 (2007). [CrossRef]
  20. C. Grivas, “Optically pumped planar waveguide lasers, Part I: Fundamentals and fabrication techniques,” Prog. Quantum Electron. 35(6), 159–239 (2011). [CrossRef]
  21. J. W. Kim, S. Y. Choi, D. I. Yeom, S. Aravazhi, M. Pollnau, U. Griebner, V. Petrov, F. Rotermund, “Yb:KYW planar waveguide laser Q-switched by evanescent-field interaction with carbon nanotubes,” Opt. Lett. 38(23), 5090–5093 (2013). [CrossRef] [PubMed]
  22. D. G. Lancaster, S. Gross, A. Fuerbach, H. E. Heidepriem, T. M. Monro, M. J. Withford, “Versatile large-mode-area femtosecond laser-written Tm:ZBLAN glass chip lasers,” Opt. Express 20(25), 27503–27509 (2012). [CrossRef] [PubMed]
  23. R. Salas-Montiel, L. Bastard, G. Grosa, J.-E. Broquin, “Hybrid Neodymium-doped passively Q-switched waveguide laser,” Mater. Sci. Eng. B 149(2), 181–184 (2008). [CrossRef]
  24. M. Pollnau, Y. E. Romanyuk, F. Gardillou, C. N. Borca, U. Griebner, S. Rivier, V. Petrov, “Double Tungstate Lasers: From Bulk Toward On-Chip Integrated Waveguide Devices,” IEEE J. Sel. Top. Quantum Electron. 13(3), 661–671 (2007). [CrossRef]
  25. Y. Tan, Q. Luan, F. Liu, F. Chen, J. R. Vázquez de Aldana, “Q-switched pulse laser generation from double-cladding Nd:YAG ceramics waveguides,” Opt. Express 21(16), 18963–18968 (2013). [CrossRef] [PubMed]
  26. Y. Tan, S. Akhmadaliev, S. Zhou, S. Sun, F. Chen, “Guided continuous-wave and graphene-based Q-switched lasers in carbon ion irradiated Nd:YAG ceramic channel waveguide,” Opt. Express 22(3), 3572–3577 (2014). [CrossRef] [PubMed]
  27. I. Chartier, B. Ferrand, D. Pelenc, S. J. Field, D. C. Hanna, A. C. Large, D. P. Shepherd, A. C. Tropper, “Growth and low-threshold laser oscillation of an epitaxially grown Nd:YAG waveguide,” Opt. Lett. 17(11), 810–812 (1992). [CrossRef] [PubMed]
  28. F. Chen, “Micro-and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications,” Laser Photon. Rev. 6(5), 622–640 (2012). [CrossRef]
  29. D. Jauqe, F. Chen, Y. Tan, “Scanning confocal fluorescence imaging and micro-Raman investigations of oxygen implanted channel waveguides in Nd:MgO:LiNbO3,” Appl. Phys. Lett. 92(16), 161908 (2008). [CrossRef]
  30. F. Chen, Y. Tan, D. Jaque, “Ion-implanted optical channel waveguides in neodymium-doped yttrium aluminum garnet transparent ceramics for integrated laser generation,” Opt. Lett. 34(1), 28–30 (2009). [CrossRef] [PubMed]
  31. F. Chen, J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014). [CrossRef]
  32. G. Lifante, Integrated Photonics: Fundamentals (John Wiley and Sons Ltd, 2003).
  33. Y. Jia, N. Dong, F. Chen, J. R. Vázquez de Aldana, Sh. Akhmadaliev, S. Zhou, “Ridge waveguide lasers in Nd:GGG crystals produced by swift carbon ion irradiation and femtosecond laser ablation,” Opt. Express 20(9), 9763–9768 (2012). [CrossRef] [PubMed]
  34. Y. Jia, N. Dong, F. Chen, J. R. Vázquez de Aldana, Sh. Akhmadaliev, S. Zhou, “Continuous wave ridge waveguide lasers in femtosecond laser micromachined ion irradiated Nd:YAG single crystals,” Opt. Mater. Express 2(5), 657–662 (2012). [CrossRef]
  35. J. R. Vázquez de Aldana, C. Méndez, L. Roso, “Saturation of ablation channels micro-machined in fused silica with many femtosecond laser pulses,” Opt. Express 14(3), 1329–1338 (2006). [CrossRef] [PubMed]
  36. A. Zoubir, L. Sha, K. Richardson, M. Richardson, “Practical uses of femtosecond laser micro-materials processing,” Appl. Phys., A Mater. Sci. Process. 77, 311–315 (2003).
  37. J. F. Ziegler, computer code, SRIM, http://www.srim.org .
  38. J. Siebenmorgen, T. Calmano, K. Petermann, G. Huber, “Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser,” Opt. Express 18(15), 16035–16041 (2010). [CrossRef] [PubMed]
  39. D. Yevick, W. Bardyszewski, “Correspondence of variational finite-difference (relaxation) and imaginary-distance propagation methods for modal analysis,” Opt. Lett. 17(5), 329–330 (1992). [CrossRef] [PubMed]
  40. G. Torchia, A. Ródenas, A. Benayas, E. Cantelar, L. Roso, D. Jaque, “Highly efficient laser action in femtosecond-written Nd: yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett. 92(11), 111103 (2008). [CrossRef]
  41. N. Pavel, G. Salamu, F. Voicu, F. Jipa, M. Zamfirescu, T. Dascalu, “Efficient laser emission in diode-pumped Nd:YAG buried waveguides realized by direct femtosecond-laser writing,” Laser Phys. Lett. 10(9), 095802 (2013). [CrossRef]
  42. R. Degl’Innocenti, S. Reidt, A. Guarino, D. Rezzonico, G. Poberaj, P. Günter, “Micromachining of ridge optical waveguides on top of He+-implanted β-BaB2O4 crystals by femtosecond laser ablation,” J. Appl. Phys. 100, 113121 (2006).
  43. H. Sun, F. He, Z. Zhou, Y. Cheng, Z. Xu, K. Sugioka, K. Midorikawa, “Fabrication of microfluidic optical waveguides on glass chips with femtosecond laser pulses,” Opt. Lett. 32(11), 1536–1538 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited