OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 11 — Jun. 2, 2014
  • pp: 12909–12914

Combination of cylindrical confinement and spark discharge for signal improvement using laser induced breakdown spectroscopy

Zongyu Hou, Zhe Wang, Jianmin Liu, Weidou Ni, and Zheng Li  »View Author Affiliations

Optics Express, Vol. 22, Issue 11, pp. 12909-12914 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1111 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Spark discharge has been proved to be an effective way to enhance the LIBS signal while moderate cylindrical confinement is able to increase the signal repeatability with limited signal enhancement effects. In the present work, these two methods were combined together not only to improve the pulse-to-pulse signal repeatability but also to simultaneously and significantly enhance the signal as well as SNR. Plasma images showed that the confinement stabilized the morphology of the plasma, especially for the discharge assisted process, which explained the improvement of the signal repeatability.

© 2014 Optical Society of America

OCIS Codes
(300.6210) Spectroscopy : Spectroscopy, atomic
(300.6365) Spectroscopy : Spectroscopy, laser induced breakdown

ToC Category:

Original Manuscript: April 7, 2014
Revised Manuscript: May 8, 2014
Manuscript Accepted: May 14, 2014
Published: May 20, 2014

Zongyu Hou, Zhe Wang, Jianmin Liu, Weidou Ni, and Zheng Li, "Combination of cylindrical confinement and spark discharge for signal improvement using laser induced breakdown spectroscopy," Opt. Express 22, 12909-12914 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. I. Babushok, F. C. DeLucia, J. L. Gottfried, C. A. Munson, A. W. Miziolek, “Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta, B At. Spectrosc. 61(9), 999–1014 (2006). [CrossRef]
  2. L. B. Guo, B. Y. Zhang, X. N. He, C. M. Li, Y. S. Zhou, T. Wu, J. B. Park, X. Y. Zeng, Y. F. Lu, “Optimally enhanced optical emission in laser-induced breakdown spectroscopy by combining spatial confinement and dual-pulse irradiation,” Opt. Express 20(2), 1436–1443 (2012). [CrossRef] [PubMed]
  3. D. K. Killinger, S. D. Allen, R. D. Waterbury, C. Stefano, E. L. Dottery, “Enhancement of Nd:YAG LIBS emission of a remote target using a simultaneous CO2 laser pulse,” Opt. Express 15(20), 12905–12915 (2007). [CrossRef] [PubMed]
  4. M. Weidman, M. Baudelet, S. Palanco, M. Sigman, P. J. Dagdigian, M. Richardson, “Nd:YAG-CO2 double-pulse laser induced breakdown spectroscopy of organic films,” Opt. Express 18(1), 259–266 (2010). [CrossRef] [PubMed]
  5. W. D. Zhou, K. X. Li, Q. M. Shen, Q. L. Chen, J. M. Long, “Optical emission enhancement using laser ablation combined with fast pulse discharge,” Opt. Express 18(3), 2573–2578 (2010). [CrossRef] [PubMed]
  6. L. I. Kexue, W. D. Zhou, Q. M. Shen, J. Shao, H. G. Qian, “Signal enhancement of lead and arsenic in soil using laser ablation combined with fast electric discharge,” Spectrochim. Acta, B At. Spectrosc. 65(5), 420–424 (2010). [CrossRef]
  7. W. Zhou, K. Li, X. Li, H. Qian, J. Shao, X. Fang, P. Xie, W. Liu, “Development of a nanosecond discharge-enhanced laser plasma spectroscopy,” Opt. Lett. 36(15), 2961–2963 (2011). [CrossRef] [PubMed]
  8. O. A. Nassef, H. E. Elsayed-Ali, “Spark discharge assisted laser induced breakdown spectroscopy,” Spectrochim. Acta, B At. Spectrosc. 60(12), 1564–1572 (2005). [CrossRef]
  9. Z. Wang, T.-B. Yuan, Z.-Y. Hou, W.-D. Zhou, J.-D. Lu, H.-B. Ding, X.-Y. Zeng, “Laser-induced breakdown spectroscopy in China,” Frontiers Phys. 8, 1–19 (2013).
  10. R. Hedwig, “Confinement effect in enhancing shock wave plasma generation at low pressure by TEA CO2 laser bombardment on quartz sample,” Spectrochim. Acta, B At. Spectrosc. 58(3), 531–542 (2003). [CrossRef]
  11. A. M. Popov, F. Colao, R. Fantoni, “Enhancement of LIBS signal by spatially confining the laser-induced plasma,” J. Anal. At. Spectrom. 24(5), 602–604 (2009). [CrossRef]
  12. A. M. Popov, F. Colao, R. Fantoni, “Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils,” J. Anal. At. Spectrom. 25(6), 837–848 (2010). [CrossRef]
  13. P. Yeates, E. T. Kennedy, “Spectroscopic, imaging, and probe diagnostics of laser plasma plumes expanding between confining surfaces,” J. Appl. Phys. 108(9), 093306 (2010). [CrossRef]
  14. M. Corsi, G. Cristoforetti, M. Hidalgo, D. Iriarte, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, “Effect of laser-induced crater depth in laser-induced breakdown spectroscopy emission features,” Appl. Spectrosc. 59(7), 853–860 (2005). [CrossRef] [PubMed]
  15. L. B. Guo, W. Hu, B. Y. Zhang, X. N. He, C. M. Li, Y. S. Zhou, Z. X. Cai, X. Y. Zeng, Y. F. Lu, “Enhancement of optical emission from laser-induced plasmas by combined spatial and magnetic confinement,” Opt. Express 19(15), 14067–14075 (2011). [CrossRef] [PubMed]
  16. Z. Wang, Z. Hou, S. L. Lui, D. Jiang, J. Liu, Z. Li, “Utilization of moderate cylindrical confinement for precision improvement of laser-induced breakdown spectroscopy signal,” Opt. Express 20(S6), A1011–A1018 (2012). [CrossRef]
  17. Z. Hou, Z. Wang, J. Liu, W. Ni, Z. Li, “Signal quality improvement using cylindrical confinement for laser induced breakdown spectroscopy,” Opt. Express 21(13), 15974–15979 (2013). [CrossRef] [PubMed]
  18. N. B. Zorov, A. A. Gorbatenko, T. A. Labutin, A. M. Popov, “A review of normalization techniques in analytical atomic spectrometry with laser sampling: From single to multivariate correction,” Spectrochim. Acta, B At. Spectrosc. 65(8), 642–657 (2010). [CrossRef]
  19. L. Li, Z. Wang, T. Yuan, Z. Hou, Z. Li, W. Ni, “A simplified spectrum standardization method for laser-induced breakdown spectroscopy measurements,” J. Anal. At. Spectrom. 26(11), 2274–2280 (2011). [CrossRef]
  20. Z. Hou, Z. Wang, S.- Lui, T. Yuan, L. Li, Z. Li, W. Ni, “Improving data stability and prediction accuracy in laser-induced breakdown spectroscopy by utilizing a combined atomic and ionic line algorithm,” J. Anal. At. Spectrom. 28(1), 107–113 (2013). [CrossRef]
  21. H. R. Griem, ed., Plasma Spectroscopy (McGraw-Hill, 1964).
  22. C. Aragón, J. A. Aguilera, “Characterization of laser induced plasmas by optical emission spectroscopy: A review of experiments and methods,” Spectrochim. Acta, B At. Spectrosc. 63(9), 893–916 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited