OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 11 — Jun. 2, 2014
  • pp: 12962–12970

Gradient index lens based combined two-photon microscopy and optical coherence tomography

Taejun Wang, Qingyun Li, Peng Xiao, Jinhyo Ahn, Young Eun Kim, Youngrong Park, Minjun Kim, Miyeoun Song, Euiheon Chung, Wan Kyun Chung, G-One Ahn, Sungjee Kim, Pilhan Kim, Seung-Jae Myung, and Ki Hean Kim  »View Author Affiliations


Optics Express, Vol. 22, Issue 11, pp. 12962-12970 (2014)
http://dx.doi.org/10.1364/OE.22.012962


View Full Text Article

Enhanced HTML    Acrobat PDF (5569 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report a miniaturized probe-based combined two-photon microscopy (TPM) and optical coherence tomography (OCT) system. This system is to study the colorectal cancer in mouse models by visualizing both cellular and structural information of the colon in 3D with TPM and OCT respectively. The probe consisted of gradient index (GRIN) lenses and a 90° reflecting prism at its distal end for side-viewing, and it was added onto an objective lens-based TPM and OCT system. The probe was 2.2 mm in diameter and 60 mm in length. TPM imaging was performed by raster scanning of the excitation focus at the imaging speed of 15.4 frames/s. OCT imaging was performed by combining the linear sample translation and probe rotation along its axis. This miniaturized probe based dual-modal system was characterized with tissue phantoms containing fluorescent microspheres, and applied to image mouse colonic tissues ex vivo as a demonstration. As OCT and TPM provided structural and cellular information of the tissues respectively, this probe based multi-modal imaging system can be helpful for in vivo studies of preclinical animal models such as mouse colonic tumorigenesis.

© 2014 Optical Society of America

OCIS Codes
(110.2760) Imaging systems : Gradient-index lenses
(110.4500) Imaging systems : Optical coherence tomography
(170.2150) Medical optics and biotechnology : Endoscopic imaging
(170.2680) Medical optics and biotechnology : Gastrointestinal
(180.2520) Microscopy : Fluorescence microscopy
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: March 14, 2014
Revised Manuscript: April 24, 2014
Manuscript Accepted: April 24, 2014
Published: May 21, 2014

Virtual Issues
Vol. 9, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Taejun Wang, Qingyun Li, Peng Xiao, Jinhyo Ahn, Young Eun Kim, Youngrong Park, Minjun Kim, Miyeoun Song, Euiheon Chung, Wan Kyun Chung, G-One Ahn, Sungjee Kim, Pilhan Kim, Seung-Jae Myung, and Ki Hean Kim, "Gradient index lens based combined two-photon microscopy and optical coherence tomography," Opt. Express 22, 12962-12970 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-11-12962


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. F. Pasha, J. A. Leighton, A. Das, M. E. Harrison, S. R. Gurudu, F. C. Ramirez, D. E. Fleischer, V. K. Sharma, “Comparison of the yield and miss rate of narrow band imaging and white light endoscopy in patients undergoing screening or surveillance colonoscopy: a meta-analysis,” Am. J. Gastroenterol. 107(3), 363–371 (2012). [CrossRef] [PubMed]
  2. J. L. Matloff, W. Abidi, R. Richards-Kortum, J. Sauk, S. Anandasabapathy, “High-resolution and optical molecular imaging for the early detection of colonic neoplasia,” Gastrointest. Endosc. 73(6), 1263–1273 (2011). [CrossRef] [PubMed]
  3. M. A. Kara, F. P. Peters, P. Fockens, F. J. ten Kate, J. J. Bergman, “Endoscopic video-autofluorescence imaging followed by narrow band imaging for detecting early neoplasia in Barrett’s esophagus,” Gastrointest. Endosc. 64(2), 176–185 (2006). [CrossRef] [PubMed]
  4. I. S. Ryu, S. H. Choi, H. Kim, M. W. Han, J. L. Roh, S. Y. Kim, S. Y. Nam, “Detection of the primary lesion in patients with cervical metastases from unknown primary tumors with narrow band imaging endoscopy: preliminary report,” Head Neck 35(1), 10–14 (2013). [CrossRef] [PubMed]
  5. C. L. Zavaleta, E. Garai, J. T. C. Liu, S. Sensarn, M. J. Mandella, D. Van de Sompel, S. Friedland, J. Van Dam, C. H. Contag, S. S. Gambhir, “A Raman-based endoscopic strategy for multiplexed molecular imaging,” Proc. Natl. Acad. Sci. U.S.A. 110(25), E2288–E2297 (2013). [CrossRef] [PubMed]
  6. S. J. Miller, C. M. Lee, B. P. Joshi, A. Gaustad, E. J. Seibel, T. D. Wang, “Targeted detection of murine colonic dysplasia in vivo with flexible multispectral scanning fiber endoscopy,” J. Biomed. Opt. 17(2), 021103 (2012). [CrossRef] [PubMed]
  7. A. M. Winkler, P. F. Rice, J. Weichsel, J. M. Watson, M. V. Backer, J. M. Backer, J. K. Barton, “In vivo, dual-modality OCT/LIF imaging using a novel VEGF receptor-targeted NIR fluorescent probe in the AOM-treated mouse model,” Mol. Imaging Biol. 13(6), 1173–1182 (2011). [CrossRef] [PubMed]
  8. N. Iftimia, A. K. Iyer, D. X. Hammer, N. Lue, M. Mujat, M. Pitman, R. D. Ferguson, M. Amiji, “Fluorescence-guided optical coherence tomography imaging for colon cancer screening: a preliminary mouse study,” Biomed. Opt. Express 3(1), 178–191 (2012). [CrossRef] [PubMed]
  9. A. R. Tumlinson, L. P. Hariri, U. Utzinger, J. K. Barton, “Miniature endoscope for simultaneous optical coherence tomography and laser-induced fluorescence measurement,” Appl. Opt. 43(1), 113–121 (2004). [CrossRef] [PubMed]
  10. J. Mavadia, J. Xi, Y. Chen, X. Li, “An all-fiber-optic endoscopy platform for simultaneous OCT and fluorescence imaging,” Biomed. Opt. Express 3(11), 2851–2859 (2012). [CrossRef] [PubMed]
  11. S. Tang, Y. Zhou, K. K. Chan, T. Lai, “Multiscale multimodal imaging with multiphoton microscopy and optical coherence tomography,” Opt. Lett. 36(24), 4800–4802 (2011). [CrossRef] [PubMed]
  12. L. P. Hariri, E. R. Liebmann, S. L. Marion, P. B. Hoyer, J. R. Davis, M. A. Brewer, J. K. Barton, “Simultaneous optical coherence tomography and laser induced fluorescence imaging in rat model of ovarian carcinogenesis,” Cancer Biol. Ther. 10(5), 438–447 (2010). [CrossRef] [PubMed]
  13. Y. Pan, H. Xie, G. K. Fedder, “Endoscopic optical coherence tomography based on a microelectromechanical mirror,” Opt. Lett. 26(24), 1966–1968 (2001). [CrossRef] [PubMed]
  14. I. N. Papadopoulos, S. Farahi, C. Moser, D. Psaltis, “High-resolution, lensless endoscope based on digital scanning through a multimode optical fiber,” Biomed. Opt. Express 4(2), 260–270 (2013). [CrossRef] [PubMed]
  15. P. Kim, M. Puoris’haag, D. Côté, C. P. Lin, S. H. Yun, “In vivo confocal and multiphoton microendoscopy,” J. Biomed. Opt. 13(1), 010501 (2008). [CrossRef] [PubMed]
  16. C. D. Saunter, S. Semprini, C. Buckley, J. Mullins, J. M. Girkin, “Micro-endoscope for in vivo widefield high spatial resolution fluorescent imaging,” Biomed. Opt. Express 3(6), 1274–1278 (2012). [CrossRef] [PubMed]
  17. G. A. Sonn, S. N. Jones, T. V. Tarin, C. B. Du, K. E. Mach, K. C. Jensen, J. C. Liao, “Optical biopsy of human bladder neoplasia with in vivo confocal laser endomicroscopy,” J. Urol. 182(4), 1299–1305 (2009). [PubMed]
  18. C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J. Biophoton. 3(5–6), 385–407 (2010). [CrossRef] [PubMed]
  19. C. Becker, M. C. Fantini, M. F. Neurath, “High resolution colonoscopy in live mice,” Nat. Protoc. 1(6), 2900–2904 (2006). [CrossRef] [PubMed]
  20. C. Becker, M. C. Fantini, S. Wirtz, A. Nikolaev, R. Kiesslich, H. A. Lehr, P. R. Galle, M. F. Neurath, “In vivo imaging of colitis and colon cancer development in mice using high resolution chromoendoscopy,” Gut 54(7), 950–954 (2005). [CrossRef] [PubMed]
  21. J. L. Dobbs, H. Ding, A. P. Benveniste, H. M. Kuerer, S. Krishnamurthy, W. Yang, R. Richards-Kortum, “Feasibility of confocal fluorescence microscopy for real-time evaluation of neoplasia in fresh human breast tissue,” J. Biomed. Opt. 18(10), 106016 (2013). [CrossRef] [PubMed]
  22. T. Makino, M. Jain, D. C. Montrose, A. Aggarwal, J. Sterling, B. P. Bosworth, J. W. Milsom, B. D. Robinson, M. M. Shevchuk, K. Kawaguchi, N. Zhang, C. M. Brown, D. R. Rivera, W. O. Williams, C. Xu, A. J. Dannenberg, S. Mukherjee, “Multiphoton tomographic imaging: a potential optical biopsy tool for detecting gastrointestinal inflammation and neoplasia,” Cancer Prev. Res. 5(11), 1280–1290 (2012). [CrossRef] [PubMed]
  23. L. E. Grosberg, A. J. Radosevich, S. Asfaha, T. C. Wang, E. M. Hillman, “Spectral characterization and unmixing of intrinsic contrast in intact normal and diseased gastric tissues using hyperspectral two-photon microscopy,” PLoS ONE 6(5), e19925 (2011). [CrossRef] [PubMed]
  24. S. Zhuo, J. Yan, G. Chen, J. Chen, Y. Liu, J. Lu, X. Zhu, X. Jiang, S. Xie, “Label-free monitoring of colonic cancer progression using multiphoton microscopy,” Biomed. Opt. Express 2(3), 615–619 (2011). [CrossRef] [PubMed]
  25. J. C. Jung, A. D. Mehta, E. Aksay, R. Stepnoski, M. J. Schnitzer, “In vivo mammalian brain Imaging using one- and two-photon fluorescence microendoscopy,” J. Neurophysiol. 92(5), 3121–3133 (2004). [CrossRef] [PubMed]
  26. L. Fu, X. S. Gan, M. Gu, “Characterization of gradient-index lens-fiber spacing toward applications in two-photon fluorescence endoscopy,” Appl. Opt. 44(34), 7270–7274 (2005). [CrossRef] [PubMed]
  27. H. C. Bao, J. Allen, R. Pattie, R. Vance, M. Gu, “Fast handheld two-photon fluorescence microendoscope with a 475 μm × 475 μm field of view for in vivo imaging,” Opt. Lett. 33(12), 1333–1335 (2008). [CrossRef] [PubMed]
  28. C. Wang, N. Ji, “Pupil-segmentation-based adaptive optical correction of a high-numerical-aperture gradient refractive index lens for two-photon fluorescence endoscopy,” Opt. Lett. 37(11), 2001–2003 (2012). [CrossRef] [PubMed]
  29. Y. Wu, Y. Leng, J. Xi, X. Li, “Scanning all-fiber-optic endomicroscopy system for 3D nonlinear optical imaging of biological tissues,” Opt. Express 17(10), 7907–7915 (2009). [CrossRef] [PubMed]
  30. J. C. Jung, M. J. Schnitzer, “Multiphoton endoscopy,” Opt. Lett. 28(11), 902–904 (2003). [CrossRef] [PubMed]
  31. B. Jeong, B. Lee, M. S. Jang, H. Nam, S. J. Yoon, T. Wang, J. Doh, B. G. Yang, M. H. Jang, K. H. Kim, “Combined two-photon microscopy and optical coherence tomography using individually optimized sources,” Opt. Express 19(14), 13089–13096 (2011). [CrossRef] [PubMed]
  32. J. K. Kim, W. M. Lee, P. Kim, M. Choi, K. Jung, S. Kim, S. H. Yun, “Fabrication and operation of GRIN probes for in vivo fluorescence cellular imaging of internal organs in small animals,” Nat. Protoc. 7(8), 1456–1469 (2012). [CrossRef] [PubMed]
  33. P. Kim, E. Chung, H. Yamashita, K. E. Hung, A. Mizoguchi, R. Kucherlapati, D. Fukumura, R. K. Jain, S. H. Yun, “In vivo wide-area cellular imaging by side-view endomicroscopy,” Nat. Methods 7(4), 303–305 (2010). [CrossRef] [PubMed]
  34. R. Suzuki, H. Kohno, S. Sugie, T. Tanaka, “Dose-dependent promoting effect of dextran sodium sulfate on mouse colon carcinogenesis initiated with azoxymethane,” Histol. Histopathol. 20(2), 483–492 (2005). [PubMed]
  35. J. G. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nat. Biotechnol. 21(11), 1361–1367 (2003). [CrossRef] [PubMed]
  36. S. Kozuka, “Premalignancy of the mucosal polyp in the large intestine: I. Histologic gradation of the polyp on the basis of epithelial pseudostratification and glandular branching,” Dis. Colon Rectum 18(6), 483–493 (1975). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

Supplementary Material


» Media 1: AVI (21677 KB)     
» Media 2: AVI (19095 KB)     
» Media 3: AVI (19273 KB)     
» Media 4: AVI (18501 KB)     
» Media 5: AVI (20871 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited