OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 11 — Jun. 2, 2014
  • pp: 12994–13013

Beam shaping for laser-based adaptive optics in astronomy

Clémentine Béchet, Andrés Guesalaga, Benoit Neichel, Vincent Fesquet, Héctor González-Núñez, Sebastián Zúñiga, Pedro Escarate, and Dani Guzman  »View Author Affiliations


Optics Express, Vol. 22, Issue 11, pp. 12994-13013 (2014)
http://dx.doi.org/10.1364/OE.22.012994


View Full Text Article

Enhanced HTML    Acrobat PDF (1185 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The availability and performance of laser-based adaptive optics (AO) systems are strongly dependent on the power and quality of the laser beam before being projected to the sky. Frequent and time-consuming alignment procedures are usually required in the laser systems with free-space optics to optimize the beam. Despite these procedures, significant distortions of the laser beam have been observed during the first two years of operation of the Gemini South multi-conjugate adaptive optics system (GeMS). A beam shaping concept with two deformable mirrors is investigated in order to provide automated optimization of the laser quality for astronomical AO. This study aims at demonstrating the correction of quasi-static aberrations of the laser, in both amplitude and phase, testing a prototype of this two-deformable mirror concept on GeMS. The paper presents the results of the preparatory study before the experimental phase. An algorithm to control amplitude and phase correction, based on phase retrieval techniques, is presented with a novel unwrapping method. Its performance is assessed via numerical simulations, using aberrations measured at GeMS as reference. The results predict effective amplitude and phase correction of the laser distortions with about 120 actuators per mirror and a separation of 1.4 m between the mirrors. The spot size is estimated to be reduced by up to 15% thanks to the correction. In terms of AO noise level, this has the same benefit as increasing the photon flux by 40%.

© 2014 Optical Society of America

OCIS Codes
(100.3190) Image processing : Inverse problems
(100.5070) Image processing : Phase retrieval
(140.3300) Lasers and laser optics : Laser beam shaping
(100.5088) Image processing : Phase unwrapping
(110.1080) Imaging systems : Active or adaptive optics

ToC Category:
Adaptive Optics

History
Original Manuscript: March 27, 2014
Revised Manuscript: May 12, 2014
Manuscript Accepted: May 13, 2014
Published: May 21, 2014

Citation
Clémentine Béchet, Andrés Guesalaga, Benoit Neichel, Vincent Fesquet, Héctor González-Núñez, Sebastián Zúñiga, Pedro Escarate, and Dani Guzman, "Beam shaping for laser-based adaptive optics in astronomy," Opt. Express 22, 12994-13013 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-11-12994


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Rousset, “Wave-front Sensors,” in Adaptive Optics in Astronomy, F. Roddier, ed. (Cambridge University, 1999), pp. 91–130. [CrossRef]
  2. F. Rigaut, B. Neichel, M. Boccas, C. d’Orgeville, F. Vidal, M. A. van Dam, G. Arriagada, V. Fesquet, R. L. Galvez, G. Gausachs, C. Cavedoni, A. W. Ebbers, S. Karewicz, E. James, J. Lührs, V. Montes, G. Perez, W. N. Rambold, R. Rojas, S. Walker, M. Bec, G. Trancho, M. Sheehan, B. Irarrazaval, C. Boyer, B. L. Ellerbroek, R. Flicker, D. Gratadour, A. Garcia-Rissmann, F. Daruich, “Gemini multiconjugate adaptive optics system review - I. Design, trade-offs and integration,” Mon. Not. R. Astron. Soc. 437, 2361–2375 (2014). [CrossRef]
  3. B. Neichel, F. Rigaut, F. Vidal, M. A. van Dam, V. Garrel, E. Rodrigo Carrasco, P. Pessev, C. Winge, M. Boccas, C. d’Orgeville, G. Arriagada, A. Serio, V. Fesquet, W. N. Rambold, J. Lührs, C. Moreno, G. Gausachs, R. L. Galvez, V. Montes, T. B. Vucina, E. Marin, C. Urrutia, A. Lopez, S. J. Diggs, C. Marchant, A. W. Ebbers, C. Trujillo, M. Bec, G. Trancho, P. McGregor, P. J. Young, F. Colazo, M. L. Edwards, “Gemini multi-conjugate adaptive optics system review II: Commissioning, operation and overall performance,” Mon. Not. R. Astron. Soc., in press (2014). [CrossRef]
  4. C. d’Orgeville, S. Diggs, V. Fesquet, B. Neichel, W. Rambold, F. Rigaut, A. Serio, C. Araya, G. Arriagada, R. Balladares, M. Bec, M. Boccas, C. Duran, A. Ebbers, A. Lopez, C. Marchant, E. Marin, V. Montes, C. Moreno, E. Petit Vega, C. Segura, G. Trancho, C. Trujillo, C. Urrutia, P. Veliz, T. Vucina, “Gemini South multi-conjugate adaptive optics (GeMS) laser guide star facility on-sky performance results,” Proc. SPIE 8447, 84471Q (2012). [CrossRef]
  5. A. E. Siegman, “New developments in laser resonators,” Proc. SPIE 1224, 2–14 (1990). [CrossRef]
  6. D. R. Neal, W. J. Alford, J. K. Gruetzner, M. E. Warren, “Amplitude and phase beam characterization using a two-dimensional wavefront sensor,” Proc. SPIE 2870, 72–82 (1996). [CrossRef]
  7. C. Béchet, A. Guesalaga, B. Neichel, V. Fesquet, D. Guzman, “A two deformable-mirror concept to improve the laser efficiency of Gemini South MCAO,”, in Proceedings of the Third AO4ELT Conference, S. Esposito, L. Fini, eds. (INAF - Osservatorio Astrofisico di Arcetri, Firenze, Italy, 2013), 13344.
  8. C. d’Orgeville, F. Daruich, G. Arriagada, M. Bec, M. Boccas, S. Bombino, C. Carter, C. Cavedoni, F. Collao, P. Collins, E. James, S. Karewicz, M. Lazo, D. Maltes, R. Mouser, G. Perez, F. Rigaut, R. Rojas, M. Sheehan, G. Trancho, V. Vergara, T. Vucina, “The Gemini South MCAO laser guide star facility: getting ready for first light,” Proc. SPIE 7015, 70152P (2008). [CrossRef]
  9. R. Holzlöhner, D. Bonaccini Calia, W. Hackenberg, “Physical optics modeling and optimization of laser guide star propagation,” Proc. SPIE 7015, 701521 (2008). [CrossRef]
  10. B. L. Ellerbroek, “Adaptive Optics for the Thirty Meter Telescope,” in Proceedings of the Third AO4ELT Conference, S. Esposito, L. Fini, eds. (INAF - Osservatorio Astrofisico di Arcetri, Firenze, Italy, 2013), 13199.
  11. Y. Feng, L. R. Taylor, D. B. Calia, “25 W Raman-fiber-amplifier-based 589 nm laser for laser guide star,” Opt. Express 17(21), 19021–19026 (2009). [CrossRef]
  12. A. Guesalaga, B. Neichel, M. Boccas, C. d’Orgeville, F. Rigaut, D. Guzman, J. Anguita, “Improving stability, robustness, and performance of laser systems,” Proc. SPIE 8447, 84474M (2012). [CrossRef]
  13. F. Y. Kanev, V. P. Lukin, “Amplitude phase beam control with the help of a two-mirror adaptive system,” Atmos. Opt. 4, 878–881 (1991).
  14. B. R. Frieden, “Lossless conversion of a plane laser wave to a plane wave of uniform irradiance,” Appl. Opt. 4, 1400–1403 (1965). [CrossRef]
  15. J. W. Ogland, “Mirror system for uniform beam transformation in high-power annular lasers,” Appl. Opt. 17, 2917–2923 (1978). [CrossRef] [PubMed]
  16. D. Shafer, “Gaussian to flat-top intensity distributing lens,” Optics & Laser Technology 14, 159–160 (1982). [CrossRef]
  17. P. W. Rhodes, D. L. Shealy, “Refractive optical systems for irradiance redistribution of collimated radiation: their design and analysis,” Appl. Opt. 19, 3545–3553 (1980). [CrossRef] [PubMed]
  18. M. T. Eismann, A. M. Tai, J. N. Cederquist, “Iterative design of a holographic beamformer,” Appl. Opt. 28, 2641–2650 (1989). [CrossRef]
  19. K. L. Baker, E. A. Stappaerts, D. Gavel, S. C. Wilks, J. Tucker, D. A. Silva, J. Olsen, S. S. Olivier, P. E. Young, M. W. Kartz, L. M. Flath, P. Kruelevitch, J. Crawford, O. Azucena, “High-speed horizontal-path atmospheric turbulence correction with a large-actuator-number microelectromechanical system spatial light modulator in an interferometric phase-conjugation engine,” Opt. Lett. 29(15), 1781–1783 (2004). [CrossRef] [PubMed]
  20. M. C. Roggemann, D. J. Lee, “Two-Deformable-Mirror Concept for Correcting Scintillation Effects in Laser Beam Projection Through the Turbulent Atmosphere,” Appl. Opt. 37(21), 4577–4585 (1998). [CrossRef]
  21. J. D. Barchers, D. L. Fried, “Optimal control of laser beams for propagation through a turbulent medium,” J. Opt. Soc. Am. A 19, 1779–1793 (2002). [CrossRef]
  22. M. A. Vorontsov, V. Kolosov, “Target-in-the-loop beam control: basic considerations for analysis and wavefront sensing,” J. Opt. Soc. Am. A 22(1), 126–141 (2005). [CrossRef]
  23. Z. Zhao, S. D. Lyke, M. C. Roggemann, “Adaptive Optical Communication through Turbulent Atmospheric Channels,” in Proceedings of IEEE Conference on Communications, 2008. ICC ’08 (Institute of Electrical and Electronics Engineers, New York, 2008), 5432–5436.
  24. R. Kizito, M. C. Roggemann, T. J. Schulz, Y. Zhang, “Image sharpness metric-based deformable mirror control for beam projection systems operating in strong scintillation,” Proc. SPIE 5160, 406–416 (2004). [CrossRef]
  25. M. C. Roggemann, S. Deng, “Scintillation compensation for laser beam projection using segmented deformable mirrors,” Proc. SPIE 3763, 29–40 (1999). [CrossRef]
  26. M. C. Roggemann, A. C. Koivunen, “Wavefront sensing and deformable mirror control in strong scintillation,” J. Opt. Soc. Am. A 17, 911–919 (2000). [CrossRef]
  27. J. D. Barchers, B. L. Ellerbroek, “Improved compensation of turbulence-induced amplitude and phase distortions by means of multiple near-field phase adjustments,” J. Opt. Soc. Am. A 18(2), 399–411 (2001). [CrossRef]
  28. J. D. Barchers, “Evaluation of the impact of finite-resolution effects on scintillation compensation using two deformable mirrors,” J. Opt. Soc. Am. A 18, 3098–3109 (2001). [CrossRef]
  29. J. D. Barchers, “Closed-loop stable control of two deformable mirrors for compensation of amplitude and phase fluctuations,” J. Opt. Soc. Am. A 19, 926–945 (2002). [CrossRef]
  30. F. Roddier, Adaptive Optics in Astronomy (Cambridge University, 1999). [CrossRef]
  31. R. A. Gonsalves, “Compensation of scintillation with a phase-only adaptive optic,” Opt. Lett. 22, 588–590 (1997). [CrossRef] [PubMed]
  32. O. Guyon, “Phase-induced amplitude apodization of telescope pupils for extrasolar terrestrial planet imaging,” Astron. Astrophys. 404, 379–387 (2003). [CrossRef]
  33. L. Pueyo, N. Kasdin, “Polychromatic compensation of propagated aberrations for high-contrast imaging,” Astrophys. J. 666, 609–625 (2007). [CrossRef]
  34. L. Pueyo, J. Kay, N. J. Kasdin, T. Groff, M. McElwain, A. Give’on, R. Belikov, “Optimal dark hole generation via two deformable mirrors with stroke minimization,” Appl. Opt. 48, 6296–6312 (2009). [CrossRef] [PubMed]
  35. D. Gavel, M. Ammons, B. Bauman, D. Dillon, E. Gates, B. Grigsby, J. Johnson, C. Lockwood, K. Morzinski, D. Palmer, M. Reinig, S. Severson, “Visible light laser guidestar experimental system (Villages): on-sky tests of new technologies for visible wavelength all-sky coverage adaptive optics systems,” Proc. SPIE 7015, 70150G (2008). [CrossRef]
  36. A. P. Norton, D. Gavel, M. Helmbrecht, C. J. Kempf, E. L. Gates, K. Chloros, D. Redel, D. Dillon, “Laser guidestar uplink correction using a MEMS deformable mirror: on-sky test results and implications for future AO systems,” accepted for Proc. SPIE (2014).
  37. X. Lei, S. Wang, H. Yan, W. Liu, L. Dong, P. Yang, B. Xu, “Double-deformable-mirror adaptive optics system for laser beam cleanup using blind optimization,” Opt. Express 20, 22143–22157 (2012). [CrossRef] [PubMed]
  38. V. Fesquet, C. Araujo, V. Garrel, A. Serio, F. Vidal, G. Arriagada, M. Boccas, F. Collao, S. Diggs, J. Donahue, C. D’Orgeville, G. Gausachs, C. Marchant, V. Montes, C. Moreno, B. Neichel, R. Oram, P. Pessev, W. Rambold, C. Urrutia, T. Vucina, “Review of Gemini South Laser Guide Star Facility performance and upgrades,” in Proceedings of the Third AO4ELT Conference, S. Esposito, L. Fini, eds. (INAF - Osservatorio Astrofisico di Arcetri, Firenze, Italy, 2013), 16120.
  39. J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. 21, 2758–2769 (1982). [CrossRef] [PubMed]
  40. R. W. Gerchberg, W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).
  41. R. A. Gonsalves, “Phase retrieval from modulus data,” J. Opt. Soc. Am. 66, 961–964 (1976). [CrossRef]
  42. J. R. Fienup, “Reconstruction of an object from the modulus of its fourier transform,” Opt. Lett. 3, 27–29 (1978). [CrossRef] [PubMed]
  43. H. Stark, Y. Yang, Vector Space Projections, a Numerical Approach to Signal and Image Processing, Neural Nets and Optics., Wiley Series in Telecommunications and Signal Processing (John Wiley., 1998).
  44. T. M. Venema, J. D. Schmidt, “Optical phase unwrapping in the presence of branch points,” Opt. Express 16, 6985–6998 (2008). [CrossRef] [PubMed]
  45. D. L. Fried, “Branch point problem in adaptive optics,” J. Opt. Soc. Am. A 15(10), 2759–2768 (1998). [CrossRef]
  46. J. D. Schmidt, Numerical Simulation of Optical Wave Propagation with examples in MATLAB (SPIE Press, 2010).
  47. C. C. Beckner, D. W. Oesch, “Implementation of a projection-on-constraints algorithm for beam intensity redistribution,” Proc. SPIE 6711, 67110L (2007)

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited