OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 11 — Jun. 2, 2014
  • pp: 13029–13040

Light sources generating self-splitting beams and their propagation in non-Kolmogorov turbulence

Zhangrong Mei  »View Author Affiliations

Optics Express, Vol. 22, Issue 11, pp. 13029-13040 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (11668 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A class of random sources producing far fields self-splitting intensity profiles with variable spacing between the x and y directions is introduced. The beam conditions for ensuring the sources to generate a beam are derived. Based on the derived analytical expression, the evolution behavior of the beams produced by these families of sources in free space and turbulence atmospheric are explored and comparatively analyzed. By changing the modulation parameters n and m, the degree of coherence of Gaussian Schell-model source in the x and y directions are modulated respectively, and then the number of splitting beams and the spacing between splitting beams can be adjusted. It is illustrated that the self-splitting intensity profile is stable when beams propagate in free space, but they eventually transformed into a Gaussian profiles when it passes at sufficiently large distances from its source through the turbulent atmosphere.

© 2014 Optical Society of America

OCIS Codes
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(030.1640) Coherence and statistical optics : Coherence
(030.6600) Coherence and statistical optics : Statistical optics

ToC Category:
Coherence and Statistical Optics

Original Manuscript: April 18, 2014
Revised Manuscript: May 12, 2014
Manuscript Accepted: May 14, 2014
Published: May 21, 2014

Zhangrong Mei, "Light sources generating self-splitting beams and their propagation in non-Kolmogorov turbulence," Opt. Express 22, 13029-13040 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Cassettari, B. Hessmo, R. Folman, T. Maier, J. Schmiedmayer, “Beam splitter for guided atoms,” Phys. Rev. Lett. 85(26), 5483–5487 (2000). [CrossRef] [PubMed]
  2. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986). [CrossRef] [PubMed]
  3. Z. Zang, T. Minato, P. Navaretti, Y. Hinokuma, M. Duelk, C. Velez, K. Hamamoto, “High-power (>110mW) superluminescent diodes by using active multimode interferometer,” IEEE Photon. Technol. Lett. 22(10), 721–723 (2010). [CrossRef]
  4. Z. Zang, K. Mukai, P. Navaretti, M. Duelk, C. Velez, K. Hamamoto, “Thermal resistance reduction in high power superluminescent diodes by using active multi-mode interferometer,” Appl. Phys. Lett. 100(3), 031108 (2012). [CrossRef]
  5. J. P. Torres, L. Torner, “Self-splitting of beams into spatial solitons in planar waveguides made of quadratic nonlinear media,” Opt. Quantum Electron. 29(7), 757–776 (1997). [CrossRef]
  6. A. Suryanto, E. Van Groesen, “Self-splitting of multisoliton bound states in planar Kerr waveguides,” Opt. Commun. 258(2), 264–274 (2006). [CrossRef]
  7. A. W. Snyder, A. V. Buryak, D. J. Mitchell, “Beam splitting on weak illumination,” Opt. Lett. 23(1), 4–6 (1998). [CrossRef] [PubMed]
  8. V. Tikhonenko, J. Christou, B. Luther-Davies, “Three dimensional bright spatial soliton collision and fusion in a saturable nonlinear medium,” Phys. Rev. Lett. 76(15), 2698–2701 (1996). [CrossRef] [PubMed]
  9. P. Halevi, “Beam splitting by a plane-parallel absorptive slab,” Opt. Lett. 7(10), 469–470 (1982). [CrossRef] [PubMed]
  10. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).
  11. S. Sahin, O. Korotkova, “Light sources generating far fields with tunable flat profiles,” Opt. Lett. 37(14), 2970–2972 (2012). [CrossRef] [PubMed]
  12. Z. Mei, O. Korotkova, E. Shchepakina, “Electromagnetic multi-Gaussian Schell-model beams,” J. Opt. 15(2), 025705 (2013). [CrossRef]
  13. H. Lajunen, T. Saastamoinen, “Propagation characteristics of partially coherent beams with spatially varying correlations,” Opt. Lett. 36(20), 4104–4106 (2011). [CrossRef] [PubMed]
  14. Z. Tong, O. Korotkova, “Nonuniformly correlated light beams in uniformly correlated media,” Opt. Lett. 37(15), 3240–3242 (2012). [CrossRef] [PubMed]
  15. Z. Tong, O. Korotkova, “Electromagnetic nonuniformly correlated beams,” J. Opt. Soc. Am. A 29(10), 2154–2158 (2012). [CrossRef] [PubMed]
  16. Z. Mei, Z. Tong, O. Korotkova, “Electromagnetic non-uniformly correlated beams in turbulent atmosphere,” Opt. Express 20(24), 26458–26463 (2012). [CrossRef] [PubMed]
  17. Z. Mei, O. Korotkova, “Random sources generating ring-shaped beams,” Opt. Lett. 38(2), 91–93 (2013). [CrossRef] [PubMed]
  18. Z. Mei, O. Korotkova, “Cosine-Gaussian Schell-model sources,” Opt. Lett. 38(14), 2578–2580 (2013). [CrossRef] [PubMed]
  19. Z. Mei, “Light sources generating self-focusing beams of variable focal length,” Opt. Lett. 39(2), 347–350 (2014). [CrossRef] [PubMed]
  20. O. Korotkova, “Random sources for rectangular far fields,” Opt. Lett. 39(1), 64–67 (2014). [CrossRef] [PubMed]
  21. C. Liang, F. Wang, X. Liu, Y. Cai, O. Korotkova, “Experimental generation of cosine-Gaussian-correlated Schell-model beams with rectangular symmetry,” Opt. Lett. 39(4), 769–772 (2014). [CrossRef] [PubMed]
  22. J. Pu, O. Korotkova, “Propagation of the degree of cross-polarization of a stochastic electromagnetic beam through the turbulent atmosphere,” Opt. Commun. 282(9), 1691–1698 (2009). [CrossRef]
  23. X. Du, D. Zhao, O. Korotkova, “Changes in the statistical properties of stochastic anisotropic electromagnetic beams on propagation in the turbulent atmosphere,” Opt. Express 15(25), 16909–16915 (2007). [CrossRef] [PubMed]
  24. I. Toselli, L. C. Andrews, R. L. Phillips, V. Ferrero, “Free-space optical system performance for laser beam propagation through non-Kolmogorov turbulence,” Opt. Eng. 47(2), 026003 (2008). [CrossRef]
  25. G. Zhou, X. Chu, “Propagation of a partially coherent cosine-Gaussian beam through an ABCD optical system in turbulent atmosphere,” Opt. Express 17(13), 10529–10534 (2009). [CrossRef] [PubMed]
  26. E. Shchepakina, O. Korotkova, “Second-order statistics of stochastic electromagnetic beams propagating through non-Kolmogorov turbulence,” Opt. Express 18(10), 10650–10658 (2010). [CrossRef] [PubMed]
  27. F. Wang, Y. Cai, “Second-order statistics of a twisted Gaussian Schell-model beam in turbulent atmosphere,” Opt. Express 18(24), 24661–24672 (2010). [CrossRef] [PubMed]
  28. A. Zilberman, E. Golbraikh, N. S. Kopeika, “Some limitations on optical communication reliability through Kolmogorov and non-Kolmogorov turbulence,” Opt. Commun. 283(7), 1229–1235 (2010). [CrossRef]
  29. O. Korotkova, E. Shchepakina, “Color changes in stochastic light fields propagating in non-Kolmogorov turbulence,” Opt. Lett. 35(22), 3772–3774 (2010). [CrossRef] [PubMed]
  30. X. Ji, X. Li, “M2-factor of truncated partially coherent beams propagating through atmospheric turbulence,” J. Opt. Soc. Am. A 28(6), 970–975 (2011). [CrossRef] [PubMed]
  31. Z. Mei, E. Shchepakina, O. Korotkova, “Propagation of cosine-Gaussian-correlated Schell-model beams in atmospheric turbulence,” Opt. Express 21(15), 17512–17519 (2013). [CrossRef] [PubMed]
  32. Z. Mei, O. Korotkova, “Electromagnetic cosine-Gaussian Schell-model beams in free space and atmospheric turbulence,” Opt. Express 21(22), 27246–27259 (2013). [CrossRef] [PubMed]
  33. F. Gori, M. Santarsiero, “Devising genuine spatial correlation functions,” Opt. Lett. 32(24), 3531–3533 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited