OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 11 — Jun. 2, 2014
  • pp: 13063–13072

Temperature characteristics of surface micromachined MEMS-VCSEL with large tuning range

C. Gierl, T. Gründl, S. Paul, K. Zogal, M. T. Haidar, P. Meissner, M.-C. Amann, and F. Küppers  »View Author Affiliations

Optics Express, Vol. 22, Issue 11, pp. 13063-13072 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2513 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Several Applications for tunable laser diodes have strict constraints in terms of overall power consumption. Furthermore, the implementation in harsh environments with large temperature fluctuations is necessary. Due to the constraint in power consumption, the application of active cooling might not be an option. For this reason we investigate the temperature characteristics of an electrically pumped MEMS-VCSEL with wide continuous wavelength tuning. For the first time, a mode hop free single mode (side mode suppression ratio (SMSR) > 40dB) tuning range of 45nm at 70°C is demonstrated with a MEMS-VCSEL. An increase of the tuning range from 85nm at 20°C to 92nm at 40°C is measured and explained. In contrast to fixed wavelength VCSEL, the investigated device shows a negative temperature induced wavelength shift of −4.5nmK−1, which is caused by the MEMS-mirror. At 1560nm, the fibre-coupled optical output power is above 0.6mW over the entire temperature range between 20°C to 70°C and shows a maximum of > 3mW at 20°C.

© 2014 Optical Society of America

OCIS Codes
(140.3600) Lasers and laser optics : Lasers, tunable
(230.4685) Optical devices : Optical microelectromechanical devices
(140.7260) Lasers and laser optics : Vertical cavity surface emitting lasers

ToC Category:
Lasers and Laser Optics

Original Manuscript: February 19, 2014
Revised Manuscript: April 25, 2014
Manuscript Accepted: April 30, 2014
Published: May 22, 2014

C. Gierl, T. Gründl, S. Paul, K. Zogal, M. T. Haidar, P. Meissner, M.-C. Amann, and F. Küppers, "Temperature characteristics of surface micromachined MEMS-VCSEL with large tuning range," Opt. Express 22, 13063-13072 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Iga, “Surface-emitting laser—its birth and generation of new optoelectronics field,” IEEE J. Sel. Top. Quant. Electron. 6, 1201–1215 (2000). [CrossRef]
  2. T. Mizunami, S. Hirose, T. Yoshinaga, K. Yamamoto, “Power-stabilized tunable narrow-band source using a VCSEL and an EDFA for FBG sensor interrogation,” Meas. Sci. Technol. 24,094017 (2013). [CrossRef]
  3. G. Totschnig, M. Lackner, R. Shau, M. Ortsiefer, J. Rosskopf, M.C. Amann, F. Winter, “High-speed vertical-cavity surface-emitting laser (VCSEL) absorption spectroscopy of ammonia (NH3) near 1.54μm,” Appl. Phys. B 76, 603–608 (2003). [CrossRef]
  4. A. Hangauer, J. Chen, R. Strzoda, M. Ortsiefer, M. Amann, “Wavelength modulation spectroscopy with a widely tunable InP-based 2.3μm vertical-cavity surface-emitting laser,” Opt. Lett. 33, 1566–1568 (2008). [CrossRef] [PubMed]
  5. O. Witzel, A. Klein, C. Meffert, S. Wagner, S. Kaiser, C. Schulz, V. Ebert, “VCSEL-based, high-speed, in situ TDLAS for in-cylinder water vapor measurements in IC engines,” Opt. Express 21, 19951–19965 (2013). [CrossRef] [PubMed]
  6. V. Jayaraman, G.D. Cole, M. Robertson, A. Uddin, A. Cable, “High-sweep-rate 1310nm MEMS-VCSEL with 150nm continuous tuning range,” Electron. Lett., 48, 867–869 (2012). [CrossRef]
  7. I. Grulkowski, J. Liu, B. Potsaid, V. Jayaraman, J. Jiang, J. Fujimoto, A. Cable, “High-precision, high-accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source,” Opt. Lett. 38, 673–675 (2013). [CrossRef] [PubMed]
  8. A. Caliman, A. Mereuta, G. Suruceanu, V. Iakovlev, A. Sirbu, E. Kapon, “8 mW fundamental mode output of wafer-fused VCSELs emitting in the 1550-nm band,” Opt. Express 19, 16996–17001 (2011). [CrossRef] [PubMed]
  9. SFF committee, “Specification for SFP+,” SFF Specifications, SFF-8431 Rev 4.1 + Addendum (2013).
  10. F. Sugihwo, M.C. Larson, J.S. Harris, “Low threshold continuously tunable vertical-cavity surface-emitting lasers with 19.1 nm wavelength range,” Appl. Phys. Lett. 70,547 (1997). [CrossRef]
  11. P. Tayebati, W. Peidong, D. Vakshoori, L. Chih-Cheng, M. Azimi, R.N. Sacks, “Half-symmetric cavity tunable microelectromechanical VCSEL with single spatial mode,” IEEE Photon. Tech. Lett. 10, 1679–1681 (1998). [CrossRef]
  12. T. Gruendl, K. Zogal, P. Debernardi, C. Gierl, C. Grasse, K. Geiger, R. Meyer, G. Boehm, M.-C. Amann, P. Meissner, F. Kueppers, “50 nm continuously tunable MEMS VCSEL devices with surface micromachining operating at 1.95 m emission wavelength,” Semicond. Sci. Technol. 28,01 (2013). [CrossRef]
  13. T. Gruendl, R.D. Nagel, P. Debernardi, K. Geiger, C. Grasse, T. Hager, M. Ortsiefer, J. Rosskopf, G. Boehm, R. Meyer, M.-C. Amann, “Novel concept for a Monolithically Integrated MEMS VCSEL,” Compound Semiconductor Week (CSW/IPRM) and 23rd Int. Conf. on InP and Rel. Mat., pp. 1–4 (2011).
  14. M.C.Y. Huang, B.C. Kan, Z. Ye, A.P. Pisano, C.J. Chang-Hasnain, “Monolithic Integrated Piezoelectric MEMS-Tunable VCSEL,” IEEE J. Sel. Top. Quant. Electron. 13, 374–380 (2007). [CrossRef]
  15. H. Sano, A. Matsutani, F. Koyama, “Athermal and tunable operations of 850 nm VCSEL with thermally actuated cantilever structure,” 35th ECOC, P2.26, pp. 1–2 (2009).
  16. M. Huang, Y. Zhou, C. Chang-Hasnain, “Nano electro-mechanical optoelectronic tunable VCSEL,” Opt. Express 15, 1222–1227 (2007). [CrossRef] [PubMed]
  17. Y. Rao, W. Yang, C. Chase, M.C.Y. Huang, D.D.P. Worland, S. Khaleghi, M.R. Chitgarha, M. Ziyadi, A.E. Willner, C.J. Chang-Hasnain, “Long-Wavelength VCSEL Using High-Contrast Grating,” IEEE J. Sel. Top. Quant. Electron. 19,1701311 (2013). [CrossRef]
  18. D. Sun, W. Fan, P. Kner, J. Boucart, T. Kagexama, D. Zhang, R. Pathak, R.F. Nabiev, W. Yuen, “Long wavelength-tunable VCSELs with optimized MEMS bridge tuning structure,” IEEE Photon. Tech. Lett. 16, 714–716 (2004). [CrossRef]
  19. B. Kogel, P. Debernardi, P. Westbergh, J.S. Gustavsson, A. Haglund, E. Haglund, J. Bengtsson, A. Larsson, “Integrated MEMS-Tunable VCSELs Using a Self-Aligned Reflow Process,” IEEE J. Quant. Electron., 48, 144–152 (2012). [CrossRef]
  20. T. Yano, H. Saito, N. Kanbara, R. Noda, S. Tezuka, N. Fujimura, M. Ooyama, T. Watanabe, T. Hirata, N. Nishiyama, “Wavelength modulation over 500kHz of micromechanically tunable InP-based VCSELs with Si-MEMS technology,” IEEE 21st ISLC, pp. 163–164 (2008).
  21. S. Jatta, B. Koegel, M. Maute, K. Zogal, F. Riemenschneider, G. Boehm, M.-C. Amann, P. Meissner, “Bulk-Micromachined VCSEL At 1.55μm With 76−nm Single-Mode Continuous Tuning Range,” IEEE Photon. Tech. Lett. 21, 1822–1824 (2009). [CrossRef]
  22. C. Gierl, T. Gruendl, P. Debernardi, K. Zogal, C. Grasse, H. Davani, G. Boehm, S. Jatta, F. Kueppers, P. Meissner, M.-C. Amann, “Surface micromachined tunable 1.55μm-VCSEL with 102nm continuous single-mode tuning,” Opt. Express 19, 17336–17343 (2011). [CrossRef] [PubMed]
  23. M. Ortsiefer, R. Shau, G. Boehm, F. Koehler, M.-C. Amann, “Low-threshold index-guided 1.5μm long-wavelength vertical-cavity surface-emitting laser with high efficiency,” Appl. Phys. Lett. 76,21792181 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited