OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 11 — Jun. 2, 2014
  • pp: 13073–13090

Scanning inverse fluorescence correlation spectroscopy

Jan Bergstrand, Daniel Rönnlund, Jerker Widengren, and Stefan Wennmalm  »View Author Affiliations


Optics Express, Vol. 22, Issue 11, pp. 13073-13090 (2014)
http://dx.doi.org/10.1364/OE.22.013073


View Full Text Article

Enhanced HTML    Acrobat PDF (1894 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Scanning Inverse Fluorescence Correlation Spectroscopy (siFCS) is introduced to determine the absolute size of nanodomains on surfaces. We describe here equations for obtaining the domain size from cross- and auto-correlation functions, measurement simulations which enabled testing of these equations, and measurements on model surfaces mimicking membranes containing nanodomains. Using a confocal microscope of 270 nm resolution the size of 250 nm domains were estimated by siFCS to 257 ± 12 nm diameter, and 40 nm domains were estimated to 65 ± 26 nm diameter. Applications of siFCS for sizing of nanodomains and protein clusters in cell membranes are discussed.

© 2014 Optical Society of America

OCIS Codes
(180.2520) Microscopy : Fluorescence microscopy
(180.5810) Microscopy : Scanning microscopy
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence

ToC Category:
Microscopy

History
Original Manuscript: February 26, 2014
Revised Manuscript: April 1, 2014
Manuscript Accepted: April 2, 2014
Published: May 22, 2014

Citation
Jan Bergstrand, Daniel Rönnlund, Jerker Widengren, and Stefan Wennmalm, "Scanning inverse fluorescence correlation spectroscopy," Opt. Express 22, 13073-13090 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-11-13073


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. C. Prinster, C. Hague, R. A. Hall, “Heterodimerization of g protein-coupled receptors: specificity and functional significance,” Pharmacol. Rev. 57(3), 289–298 (2005). [CrossRef] [PubMed]
  2. I. Bethani, S. S. Skånland, I. Dikic, A. Acker-Palmer, “Spatial organization of transmembrane receptor signalling,” EMBO J. 29(16), 2677–2688 (2010). [CrossRef] [PubMed]
  3. D. Lingwood, K. Simons, “Lipid Rafts As a Membrane-Organizing Principle,” Science 327(5961), 46–50 (2010). [CrossRef] [PubMed]
  4. S. W. Hell, J. Wichmann, “Breaking the Diffraction Resolution Limit by Stimulated Emission: Stimulated-Emission-Depletion Fluorescence Microscopy,” Opt. Lett. 19(11), 780–782 (1994). [CrossRef] [PubMed]
  5. M. J. Rust, M. Bates, X. W. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–795 (2006). [CrossRef] [PubMed]
  6. M. Heilemann, S. van de Linde, M. Schüttpelz, R. Kasper, B. Seefeldt, A. Mukherjee, P. Tinnefeld, M. Sauer, “Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes,” Angew. Chem. Int. Ed. Engl. 47(33), 6172–6176 (2008). [CrossRef] [PubMed]
  7. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006). [CrossRef] [PubMed]
  8. V. Westphal, S. O. Rizzoli, M. A. Lauterbach, D. Kamin, R. Jahn, S. W. Hell, “Video-rate far-field optical nanoscopy dissects synaptic vesicle movement,” Science 320(5873), 246–249 (2008). [CrossRef] [PubMed]
  9. C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. von Middendorff, A. Schönle, S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature 457(7233), 1159–1162 (2009). [CrossRef] [PubMed]
  10. D. Magde, W. W. Webb, E. Elson, “Thermodynamic Fluctuations in a Reacting System - Measurement by Fluorescence Correlation Spectroscopy,” Phys. Rev. Lett. 29(11), 705–708 (1972). [CrossRef]
  11. R. Rigler, U. Mets, J. Widengren, P. Kask, “Fluorescence Correlation Spectroscopy with High Count Rate and Low-Background - Analysis of Translational Diffusion,” Eur Biophys J Biophy 22(3), 169–175 (1993). [CrossRef]
  12. J. Widengren, R. Rigler, “Fluorescence correlation spectroscopy as a tool to investigate chemical reactions in solutions and on cell surfaces,” Cell. Mol. Biol. (Noisy-le-grand) 44(5), 857–879 (1998). [PubMed]
  13. S. Wennmalm, P. Thyberg, L. Xu, J. Widengren, “Inverse-fluorescence correlation spectroscopy,” Anal. Chem. 81(22), 9209–9215 (2009). [CrossRef] [PubMed]
  14. S. Wennmalm, J. Widengren, “Inverse-fluorescence cross-correlation spectroscopy,” Anal. Chem. 82(13), 5646–5651 (2010). [CrossRef] [PubMed]
  15. S. Wennmalm, J. Widengren, “Inverse-fluorescence correlation spectroscopy: more information and less labeling,” Front Biosci (Schol Ed) 3(1), 385–392 (2011). [CrossRef] [PubMed]
  16. E. Elson, Washington University, St Louis, Missouri, USA, (personal communication, 2013).
  17. T. Sandén, R. Wyss, C. Santschi, G. Hassaïne, C. Deluz, O. J. Martin, S. Wennmalm, H. Vogel, “A zeptoliter volume meter for analysis of single protein molecules,” Nano Lett. 12(1), 370–375 (2012). [CrossRef] [PubMed]
  18. D. Wildanger, E. Rittweger, L. Kastrup, S. W. Hell, “STED microscopy with a supercontinuum laser source,” Opt. Express 16(13), 9614–9621 (2008). [CrossRef] [PubMed]
  19. D. Rönnlund, Y. Yang, H. Blom, G. Auer, J. Widengren, “Fluorescence Nanoscopy of Platelets Resolves Platelet-State Specific Storage, Release and Uptake of Proteins, Opening up Future Diagnostic Applications,” Adv Healthc Mater 1(6), 707–713 (2012). [CrossRef] [PubMed]
  20. S. Costantino, J. W. D. Comeau, D. L. Kolin, P. W. Wiseman, “Accuracy and dynamic range of spatial image correlation and cross-correlation spectroscopy,” Biophys. J. 89(2), 1251–1260 (2005). [CrossRef] [PubMed]
  21. N. O. Petersen, P. L. Höddelius, P. W. Wiseman, O. Seger, K. E. Magnusson, “Quantitation of Membrane Receptor Distributions by Image Correlation Spectroscopy: Concept and Application,” Biophys. J. 65(3), 1135–1146 (1993). [CrossRef] [PubMed]
  22. D. L. Kolin, P. W. Wiseman, “Advances in image correlation spectroscopy: Measuring number densities, aggregation states, and dynamics of fluorescently labeled macromolecules in cells,” Cell Biochem. Biophys. 49(3), 141–164 (2007). [CrossRef] [PubMed]
  23. A. Honigmann, G. van den Bogaart, E. Iraheta, H. J. Risselada, D. Milovanovic, V. Mueller, S. Müllar, U. Diederichsen, D. Fasshauer, H. Grubmüller, S. W. Hell, C. Eggeling, K. Kühnel, R. Jahn, “Phosphatidylinositol 4,5-bisphosphate clusters act as molecular beacons for vesicle recruitment,” Nat. Struct. Mol. Biol. 20(6), 679–686 (2013). [CrossRef] [PubMed]
  24. F. Göttfert, C. A. Wurm, V. Mueller, S. Berning, V. C. Cordes, A. Honigmann, S. W. Hell, “Coaligned Dual-Channel STED Nanoscopy and Molecular Diffusion Analysis at 20 nm Resolution,” Biophys. J. 105(1), L01–L03 (2013). [CrossRef] [PubMed]
  25. B. Hein, K. I. Willig, C. A. Wurm, V. Westphal, S. Jakobs, S. W. Hell, “Stimulated Emission Depletion Nanoscopy of Living Cells Using SNAP-Tag Fusion Proteins,” Biophys. J. 98(1), 158–163 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited