OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 11 — Jun. 2, 2014
  • pp: 13091–13101

Large-mode-area infrared guiding in ultrafast laser written waveguides in Sulfur-based chalcogenide glasses

C. D’Amico, G. Cheng, C. Mauclair, J. Troles, L. Calvez, V. Nazabal, C. Caillaud, G. Martin, B. Arezki, E. LeCoarer, P. Kern, and R. Stoian  »View Author Affiliations

Optics Express, Vol. 22, Issue 11, pp. 13091-13101 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1334 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Current demands in astrophotonics impose advancing optical functions in infrared domains within embedded refractive index designs. We demonstrate concepts for large-mode-area guiding in ultrafast laser photowritten waveguides in bulk Sulfur-based chalcogenide glasses. If positive index contrasts are weak in As2S3, Ge doping increases the matrix rigidity and allows for high contrast (10−3) positive refractive index changes. Guiding with variable mode diameter and large-mode-area light transport is demonstrated up to 10 μm spectral domain using transverse slit-shaped and evanescently-coupled multicore traces.

© 2014 Optical Society of America

OCIS Codes
(130.3060) Integrated optics : Infrared
(130.3120) Integrated optics : Integrated optics devices
(140.3390) Lasers and laser optics : Laser materials processing
(160.2750) Materials : Glass and other amorphous materials
(230.7370) Optical devices : Waveguides
(320.2250) Ultrafast optics : Femtosecond phenomena

ToC Category:
Integrated Optics

Original Manuscript: March 5, 2014
Revised Manuscript: May 1, 2014
Manuscript Accepted: May 1, 2014
Published: May 22, 2014

C. D’Amico, G. Cheng, C. Mauclair, J. Troles, L. Calvez, V. Nazabal, C. Caillaud, G. Martin, B. Arezki, E. LeCoarer, P. Kern, and R. Stoian, "Large-mode-area infrared guiding in ultrafast laser written waveguides in Sulfur-based chalcogenide glasses," Opt. Express 22, 13091-13101 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Bland-Hawthorn, P. Kern, “Astrophotonics: a new era for astronomical instruments,” Opt. Express 17, 1880–1884 (2009). [CrossRef] [PubMed]
  2. J. Bland-Hawthorn, M. Englund, G. Edvell, “New approach to atmospheric OH suppression using an aperiodic fibre Bragg grating,” Opt. Express 12, 5902–5909 (2004). [CrossRef] [PubMed]
  3. P. Houizot, C. Boussard-Plédel, A. J. Faber, L. K. Cheng, B. Bureau, P. A. Van Nijnatten, W. L. M. Gielesen, J. Pereira do Carmo, J. Lucas, “Infrared single mode chalcogenide glass fiber for space,” Opt. Express 15, 12529–12538 (2007). [CrossRef] [PubMed]
  4. E. le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Léronde, G. Leblond, P. Kern, J. M. Fedeli, P. Royer, “Wavelength-scale stationary-wave integrated Fourier transform spectrometry,” Nat. Phot. 1, 473–478 (2007). [CrossRef]
  5. T. A. Birks, B. J. Mangan, A. Díez, J. L. Cruz, D. F. Murphy, “Photonic lantern spectral filters in multi-core fibre,” Opt. Express 20, 13996–14008 (2012). [CrossRef] [PubMed]
  6. F. Malbet, P. Kern, I. Schanen-Duport, J. -P. Berger, K. Rousselet-Perraut, P. Benech, “Integrated optics for astronomical interferometry. I. Concept and astronomical applications,” Astron. Astrophys. Suppl. Ser 138, 135–145 (1999). [CrossRef]
  7. D. Noordegraaf, P. M. W. Skovgaard, M. D. Nielsen, J. Bland-Hawthorn, “Efficient multi-mode to single-mode coupling in a photonic lantern,” Opt. Express 17, 1988–1994 (2009). [CrossRef] [PubMed]
  8. B. J. Eggleton, “Chalcogenide photonics: fabrication, devices and applications Introduction,” Opt. Express 18, 26632–26634 (2010). [CrossRef] [PubMed]
  9. J. Hu, J. Meyer, K. Richardson, L. Shah, “Feature issue introduction: mid-IR photonic materials,” Opt. Mat. Express 3, 1571–1575 (2013). [CrossRef]
  10. V. G. Ta’eed, N. J. Baker, L. Fu, K. Finsterbusch, M. R. E. Lamont, D. J. Moss, H. C. Nguyen, B. J. Eggleton, D. Y. Choi, S. Madden, B. Luther-Davies, “Ultrafast all-optical chalcogenide glass photonic circuits,” Opt. Express 15, 9205–9221 (2007). [CrossRef]
  11. A. Zakery, S. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330, 1–12 (2003). [CrossRef]
  12. J. S. Sanghera, I. D. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids 256–257, 462–467 (2008). [CrossRef]
  13. X. Gai, T. Han, A. Prasad, S. Madden, D.-Y. Choi, R. Wang, D. Bulla, B. Luther-Davies, “Progress in optical waveguides fabricated from chalcogenide glasses,” Opt. Express 18, 26635–26646 (2010). [CrossRef] [PubMed]
  14. L. Labadie, G. Martin, N. C. Anheier, B. Arezki, H. A. Qiao, B. Bernacki, P. Kern, “First fringes with an integrated-optics beam combiner at 10 μm. A new step towards instrument miniaturization for mid-infrared interferometry,” Astronomy and Astrophysics 531, A48 (2011). [CrossRef]
  15. R. R. Thomson, A. K. Kar, J. Allington-Smith, “Ultrafast laser inscription: an enabling technology for astrophotonics,” Opt. Express 17, 1963–1969 (2009). [CrossRef] [PubMed]
  16. N. Cvetojevic, N. Jovanovic, J. Lawrence, M. Withford, J. Bland-Hawthornn, “Developing arrayed waveguide grating spectrographs for multi-object astronomical spectroscopy,” Opt. Lett. 20, 2062–2072 (2012).
  17. N. Jovanovic, P. G. Tuthill, B. Norris, S. Gross, P. Stewart, N. Charles, S. Lacour, M. Ams, J. S. Lawrence, A. Lehmann, C. Niel, J. G. Robertson, G. D. Marshall, M. Ireland, A. Fuerbach, M. J. Withford, “Starlight demonstration of the Dragonfly instrument: an integrated photonic pupil-remapping interferometer for high-contrast imaging,” Mon. Not. R. Astron. Soc. 427, 806–815 (2012). [CrossRef]
  18. R. R. Thomson, T. A. Birks, S. G. Leon-Saval, A. K. Kar, J. Bland-Hawthorn, “Ultrafast laser inscription of an integrated photonic lantern,” Opt. Express 19, 5698–5705 (2011). [CrossRef] [PubMed]
  19. J. Lucas, “Infrared glasses,” Cur. Op. Sol. St. Mat. Sci. 4, 181–187 (1999).
  20. J. A. Savage, “Optical properties of chalcogenide glasses,” J. Non-Cryst. Solids 47, 101–116 (1982). [CrossRef]
  21. B. Bureau, X. H. Zhang, F. Smektala, J.-L. Adam, J. Troles, H.-li Ma, C. Boussard-Plédel, J. Lucas, P. Lucas, D. Le Coq, M. R. Riley, J. H. Simmons, “Recent advances in chalcogenide glasses,” J. Non-Cryst. Solids 345–346, 276–283 (2004). [CrossRef]
  22. J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V.Q. Nguyen, M. Bashkansky, Z. Dutton, I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354, 462–467 (2008). [CrossRef]
  23. H. Kanbara, S. Fujiwara, K. Tanaka, H. Nasu, K. Hirao, “Third-order nonlinear optical properties of chalcogenide glasses,” Appl. Phys. Lett. 70, 925–927 (1997). [CrossRef]
  24. K. S. Bindra, H. T. Bookey, A. K. Kar, B. S. Wherrett, X. Liu, A. Jha, “Nonlinear optical properties of chalcogenide glasses: Observation of multiphoton absorption,” Appl. Phys. Lett. 9, 1939–1941 (2001). [CrossRef]
  25. T. Cardinal, K. A. Richardson, H. Shim, A. Schulte, R. Beatty, K. Le Foulgoc, C. Meneghini, J. F. Viens, A. Villeneuve, “Non-linear optical properties of chalcogenide glasses in the system As-S-Se,” J. Non.Cryst Solids 256–257, 353–360 (1999). [CrossRef]
  26. G. Boudebs, F. Sanchez, J. Troles, F. Smektala, “Nonlinear optical properties of chalcogenide glasses: comparison between MachZehnder interferometry and Z-scan techniques,” Opt. Commun. 199, 425–433 (2001). [CrossRef]
  27. J.-F. Viens, C. Meneghini, A. Villeneuve, T. V. Galstian, E. J. Knystautas, M. A. Duguay, K. A. Richardson, T. Cardinal, “Fabrication and characterization of integrated optical waveguides in sulfide chalcogenide glasses,” J. LightwaveTech. 17, 1184–1991 (1999). [CrossRef]
  28. T. Han, S. Madden, D. Bulla, B. Luther-Davies, “Low loss Chalcogenide glass waveguides by thermal nano-imprint lithography,” Opt. Express 18, 19286–19291 (2010). [CrossRef] [PubMed]
  29. K. Tanaka, “Photoexpansion in As2S3 glass,” Phys. Rev. B 57, 5163–5167 (1998). [CrossRef]
  30. K. Tanaka, “Structural phase transitions in chalcogenide glasses,” Phys. Rev. B 39, 1270–1279 (1989). [CrossRef]
  31. H. Fritzche, “Photo-induced fluidity of chalcogenide glasses,” Solid State Commun. 99, 153–155 (1996). [CrossRef]
  32. V. M. Lyubin, V. K. Tikhomirov, “Novel photo-induced effects in chalcogenide glasses,” J. Non-Cryst. Solids 135, 37–48 (1991). [CrossRef]
  33. J. P. De Neufville, S. C. Moss, S. R. Ovshinsky, “Photostructural transformations in amorphous As2Se3 and As2S3 films,” J. Non-Cryst. Solids 13, 191–223 (1974). [CrossRef]
  34. G. Chen, H. Jain, M. Vlcek, S. Khalid, J. Li, D. A. Drabold, S. R. Elliott, “Observation of light polarization-dependent structural changes in chalcogenide glasses,” Appl. Phys. Lett. 82, 606–608 (2003).
  35. H. Jain, S. Krishnaswami, A. C. Miller, P. Krecmer, S. R. Elliott, M. Vlček, “In situ high-resolution X-ray photoelectron spectroscopy of light-induced changes in As-Se glasses,” J. Non-Crys. Solids 274, 115–123 (2000). [CrossRef]
  36. O. M. Efimov, L. B. Glebov, K. A. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, J. L. Bruneel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17, 379–386 (2001). [CrossRef]
  37. C. Meneghini, A. Villeneuve, “As2S3 photosensitivity by two-photon absorption: holographic gratings and self-written channel waveguides,” J. Opt. Soc. Am. B 15, 2946–2950 (1998). [CrossRef]
  38. A. M. Ljungström, T. M. Monro, “Light-Induced Self-Writing Effects in Bulk Chalcogenide Glass,” J. Light-waveTechnol. 20, 78–85 (2002). [CrossRef]
  39. M. Hughes, W. Yang, D. Hewak, “Fabrication and characterization of femtosecond laser written waveguides in chalcogenide glass,” Appl. Phys. Lett. 90, 131113 (2007). [CrossRef]
  40. N. D. Psaila, R. R. Thomson, H. T. Bookey, S. Shen, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, A. K. Kar, “Supercontinuum generation in an ultrafast laser inscribed chalcogenide glass waveguide,” Opt. Express 15, 15776–15781 (2007). [CrossRef] [PubMed]
  41. O. Caulier, D. Le Coq, L. Calvez, E. Bychkov, P. Masselin, “Free carrier accumulation during direct laser writing in chalcogenide glass by light filamentation,” Opt. Express 19, 20088–20096 (2011). [CrossRef] [PubMed]
  42. M. A. Hughes, W. Yang, D. W. Hewak, “Spectral broadening in femtosecond laser written waveguides in chalcogenide glass,” J. Opt. Soc. Am. B 26, 1370–1378 (2010). [CrossRef]
  43. S. Juodkazis, T. Kondo, H. Misawa, A. Rode, M. Samoc, B. Luther-Davies, “Photo-structuring of As2S3 glass by femtosecond irradiation,” Opt. Express 14, 7751–7756 (2006). [CrossRef] [PubMed]
  44. A. Ródenas, G. Martin, B. Arezki, N. Psaila, G. Jose, A. Jha, L. Labadie, P. Kern, A. Kar, R. Thomson, “Three-dimensional mid-infrared photonic circuits in chalcogenide glass,” Opt. Lett. 37, 392–394 (2012). [CrossRef] [PubMed]
  45. A. Zoubir, M. Richardson, C. Rivero, A. Schulte, C. Lopez, K. Richardson, N. Ho, R. Vallée, “Direct femtosecond laser writing of waveguides in As2S3 thin films,” Opt. Lett. 29, 748–750 (2004). [CrossRef] [PubMed]
  46. T. Anderson, N. Carlie, L. Petit, J. Hu, A. Agarwal, J. J. Viens, J. Choi, L. C. Kimmerling, K. Richardson, M. Richardson, “Refractive index modifications in Chalcogenide films induced by sub-bandgap near-IR femtosecond pulses,” Paper CThS6 CLEO conference (2007).
  47. P. Masselin, D. Le Coq, A. Cuisset, E. Bychkov, “Spatially resolved Raman analysis of laser induced refractive index variation in chalcogenide glass,” Opt. Mat. Express 2, 1768–1775 (2012). [CrossRef]
  48. A. Mermillod-Blondin, C. Mauclair, A. Rosenfeld, J. Bonse, I. V. Hertel, E. Audouard, R. Stoian, “Size correction in ultrafast laser processing of fused silica by temporal pulse shaping,” Appl. Phys. Lett. 93, 021921 (2008). [CrossRef]
  49. O. Caulier, D. Le Coq, E. Bychkov, P. Masselin, “Direct laser writing of buried waveguide in As2S3 glass using a helical sample translation,” Opt. Lett. 38, 4212–4215 (2013). [CrossRef] [PubMed]
  50. Y. Cheng, K. Sugioka, K. Midorikawa, M. Masuda, K. Toyoda, M. Kawachi, K. Shihoyama, “Control of the cross-sectional shape of a hollow microchannel embedded in photostructurable glass by use of a femtosecond laser,” Opt. Lett. 28, 55–57 (2003). [CrossRef] [PubMed]
  51. G. Cheng, C. D’Amico, X. Liu, R. Stoian, “Large mode area waveguides with polarization functions by volume ultrafast laser photoinscription of fused silica,” Opt. Lett. 38, 1924–1927 (2013). [CrossRef] [PubMed]
  52. B. McMillen, B. Zhang, K. P. Chen, A. Benayas, D. Jaque, “Ultrafast laser fabrication of low-loss waveguides in chalcogenide glass with 0.65 dB/cm loss,” Opt. Lett. 37, 1418–1420 (2012). [CrossRef] [PubMed]
  53. M. M. Vogel, M. Abdou-Ahmed, A. Voss, T. Graf, “Very-large-mode-area, single-mode multicore fiber,” Opt. Lett. 34, 2876–2878 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited