OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 11 — Jun. 2, 2014
  • pp: 13102–13108

Focused ion beam post-processing of optical fiber Fabry-Perot cavities for sensing applications

Ricardo M. André, Simon Pevec, Martin Becker, Jan Dellith, Manfred Rothhardt, Manuel B. Marques, Denis Donlagic, Hartmut Bartelt, and Orlando Frazão  »View Author Affiliations


Optics Express, Vol. 22, Issue 11, pp. 13102-13108 (2014)
http://dx.doi.org/10.1364/OE.22.013102


View Full Text Article

Enhanced HTML    Acrobat PDF (2949 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Focused ion beam technology is combined with chemical etching of specifically designed fibers to create Fabry-Perot interferometers. Hydrofluoric acid is used to etch special fibers and create microwires with diameters of 15 μm. These microwires are then milled with a focused ion beam to create two different structures: an indented Fabry-Perot structure and a cantilever Fabry-Perot structure that are characterized in terms of temperature. The cantilever structure is also sensitive to vibrations and is capable of measuring frequencies in the range 1 Hz – 40 kHz.

© 2014 Optical Society of America

OCIS Codes
(050.2230) Diffraction and gratings : Fabry-Perot
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(160.2290) Materials : Fiber materials
(230.4000) Optical devices : Microstructure fabrication

ToC Category:
Sensors

History
Original Manuscript: March 18, 2014
Revised Manuscript: May 15, 2014
Manuscript Accepted: May 17, 2014
Published: May 22, 2014

Citation
Ricardo M. André, Simon Pevec, Martin Becker, Jan Dellith, Manfred Rothhardt, Manuel B. Marques, Denis Donlagic, Hartmut Bartelt, and Orlando Frazão, "Focused ion beam post-processing of optical fiber Fabry-Perot cavities for sensing applications," Opt. Express 22, 13102-13108 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-11-13102


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Reyntjens, R. Puers, “A review of focused ion beam applications in microsystem technology,” J. Micromech. Microeng. 11(4), 287–300 (2001). [CrossRef]
  2. A. A. Tseng, “Recent developments in micromilling using focused ion beam technology,” J. Micromech. Microeng. 14(4), R15–R34 (2004). [CrossRef]
  3. C. Martelli, P. Olivero, J. Canning, N. Groothoff, S. Prawer, S. Huntington, and B. Gibson, “Micromachining long period gratings in optical fibres using focused ion beam,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (Optical Society of America, 2007), p. BTuC6.
  4. J.-L. Kou, S.-J. Qiu, F. Xu, Y.-Q. Lu, Y. Yuan, G. Zhao, “Miniaturized metal-dielectric-hybrid fiber tip grating for refractive index sensing,” IEEE Photon. Technol. Lett. 23(22), 1712–1714 (2011). [CrossRef]
  5. J. L. Kou, S. J. Qiu, F. Xu, Y. Q. Lu, “Demonstration of a compact temperature sensor based on first-order Bragg grating in a tapered fiber probe,” Opt. Express 19(19), 18452–18457 (2011). [CrossRef] [PubMed]
  6. D. Iannuzzi, K. Heeck, M. Slaman, S. de Man, J. H. Rector, H. Schreuders, J. W. Berenschot, V. J. Gadgil, R. G. P. Sanders, M. C. Elwenspoek, S. Deladi, “Fibre-top cantilevers: design, fabrication and applications,” Meas. Sci. Technol. 18(10), 3247–3252 (2007). [CrossRef]
  7. K. P. Nayak, F. Le Kien, Y. Kawai, K. Hakuta, K. Nakajima, H. T. Miyazaki, Y. Sugimoto, “Cavity formation on an optical nanofiber using focused ion beam milling technique,” Opt. Express 19(15), 14040–14050 (2011). [CrossRef] [PubMed]
  8. F. Wang, W. Yuan, O. Hansen, O. Bang, “Selective filling of photonic crystal fibers using focused ion beam milled microchannels,” Opt. Express 19(18), 17585–17590 (2011). [CrossRef] [PubMed]
  9. J. L. Kou, J. Feng, Q. J. Wang, F. Xu, Y. Q. Lu, “Microfiber-probe-based ultrasmall interferometric sensor,” Opt. Lett. 35(13), 2308–2310 (2010). [CrossRef] [PubMed]
  10. J. L. Kou, J. Feng, L. Ye, F. Xu, Y. Q. Lu, “Miniaturized fiber taper reflective interferometer for high temperature measurement,” Opt. Express 18(13), 14245–14250 (2010). [CrossRef] [PubMed]
  11. W. Yuan, F. Wang, A. Savenko, D. H. Petersen, O. Bang, “Note: Optical fiber milled by focused ion beam and its application for Fabry-Pérot refractive index sensor,” Rev. Sci. Instrum. 82(7), 076103 (2011). [CrossRef] [PubMed]
  12. S. Pevec, E. Cibula, B. Lenardic, D. Donlagic, “Micromachining of optical fibers using selective etching based on phosphorus pentoxide doping,” IEEE Photon. J. 3(4), 627–632 (2011). [CrossRef]
  13. S. Pevec, D. Donlagic, “All-fiber, long-active-length Fabry-Perot strain sensor,” Opt. Express 19(16), 15641–15651 (2011). [CrossRef] [PubMed]
  14. S. Pevec, D. Donlagic, “Miniature micro-wire based optical fiber-field access device,” Opt. Express 20(25), 27874–27887 (2012). [CrossRef] [PubMed]
  15. T. Wei, Y. Han, H.-L. Tsai, H. Xiao, “Miniaturized fiber inline Fabry-Perot interferometer fabricated with a femtosecond laser,” Opt. Lett. 33(6), 536–538 (2008). [CrossRef] [PubMed]
  16. L. Zhao, L. Jiang, S. Wang, H. Xiao, Y. Lu, H.-L. Tsai, “A high-quality Mach-Zehnder interferometer fiber sensor by femtosecond laser one-step processing,” Sensors 11(1), 54–61 (2011). [CrossRef] [PubMed]
  17. L. Yuan, T. Wei, Q. Han, H. Wang, J. Huang, L. Jiang, H. Xiao, “Fiber inline Michelson interferometer fabricated by a femtosecond laser,” Opt. Lett. 37(21), 4489–4491 (2012). [CrossRef] [PubMed]
  18. J. Kalenik, R. Pająk, “A cantilever optical-fiber accelerometer,” Sens. Actuators A Phys. 68(1-3), 350–355 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited