OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 11 — Jun. 2, 2014
  • pp: 13109–13124

Assessment of the colored dissolved organic matter in coastal waters from ocean color remote sensing.

Hubert Loisel, Vincent Vantrepotte, David Dessailly, and Xavier Mériaux  »View Author Affiliations


Optics Express, Vol. 22, Issue 11, pp. 13109-13124 (2014)
http://dx.doi.org/10.1364/OE.22.013109


View Full Text Article

Enhanced HTML    Acrobat PDF (2012 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Knowledge on absorption by colored dissolved organic matter, acdom, spatio-temporal variability in coastal areas is of fundamental importance in many field of researches related to biogeochemical cycles studies, coastal areas management, as well as land and water interactions in the coastal domain. A new method, based on the theoretical link between the vertical attenuation coefficient, Kd, and the absorption coefficient, has been developed to assess acdom. This method, confirmed from radiative transfer simulations and in situ measurements, and tested on an independent in situ data set (N = 126), allows acdom to be assessed with a Mean Relative Absolute Difference, MRAD, of 33% over two order of magnitude (from 0.01 to 1.16 m−1). In the frame of ocean color observation, Kd is not directly measured but estimated from the remote sensing reflectance, Rrs. Based on 109 satellite (SeaWiFS) and in situ coincident (i.e. match-up) data points acdom is retrieved with a MRAD value of 37%. This simple model generally presents slightly better performances than recently developed empirical or semi-analytical algorithms.

© 2014 Optical Society of America

OCIS Codes
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(010.1030) Atmospheric and oceanic optics : Absorption
(010.1690) Atmospheric and oceanic optics : Color

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: March 18, 2014
Revised Manuscript: May 9, 2014
Manuscript Accepted: May 9, 2014
Published: May 22, 2014

Citation
Hubert Loisel, Vincent Vantrepotte, David Dessailly, and Xavier Mériaux, "Assessment of the colored dissolved organic matter in coastal waters from ocean color remote sensing.," Opt. Express 22, 13109-13124 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-11-13109


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. T. O. Kirk, Light and Photosynthesis in Aquatic Ecosystems (Academic, 1994).
  2. N. V. Blough and R. Del Vecchio, “Chromophoric DOM in the coastal environment,” in Biogeochemistry of Marine Dissolved Organic Matter, D. A. Hansell and C. A. Carslon, ed. (Academic, 2002).
  3. V. Vantrepotte, C. Brunet, X. Mériaux, E. Lécuyer, V. Vellucci, R. Santer, “Bio-optical properties of coastal waters in the Eastern English Channel,” Estuar. Coast. Shelf Sci. 72(1–2), 201–212 (2007). [CrossRef]
  4. A. Mannino, M. Russ, S. Hooker, “Algorithm development and validation for satellite-derived distributions of DOC and CDOM in the US Middle Atlantic Bight,” J. Geophys. Res. 113(C7), C07051 (2008). [CrossRef]
  5. C. E. Del Castillo, “Remote Sensing of Colored Dissolved Organic Matter in Coastal Environments,” in Remote Sensing of Aquatic Coastal Environments, R. M. Miller, C. E. Del Castillo, and B. McKee, ed. (Academic, 2004).
  6. C. Fichot, R. Benner, “The spectral slope coefficient of chromophoric dissolved organic matter (S275-295) as a tracer of terrigenous dissolved organic carbon in river-influenced ocean margins,” Limnol. Oceanogr. 57(5), 1453–1466 (2012). [CrossRef]
  7. K. L. Carder, S. K. Hawes, K. A. Baker, R. C. Smith, R. G. Steward, B. G. Mitchell, “Reflectance model for quantifying chlorophyll-a in the presence of productivity degradation products,” J. Geophys. Res. 96(C11), 20599–20611 (1991). [CrossRef]
  8. D. A. Siegel, S. Maritorena, N. B. Nelson, M. J. Behrenfeld, C. R. McClain, “Colored dissolved organic matter and its influence on the satellite-based characterization of the ocean biosphere,” Geophys. Res. Lett. 32(20), L20605 (2005), doi:. [CrossRef]
  9. A. Morel, B. Gentili, “A simple band ratio technique to quantify the colored dissolved and detrital organic material from ocean color remotely sensed data,” Remote Sens. Environ. 113(5), 998–1011 (2009), doi:. [CrossRef]
  10. C. A. Brown, Y. Huot, P. J. Werdell, B. Gentili, H. Claustre, “The origin and global distribution of second order variability in satellite ocean color and its potential applications to algorithm development,” Remote Sens. Environ. 112(12), 4186–4203 (2008), doi:. [CrossRef]
  11. L. Hubert, B. Lubac, D. Dessailly, L. Duforêt-Gaurier, V. Vantrepotte, “Effect of inherent optical properties variability on the chlorophyll retrieval from ocean color remote sensing: an in situ approach,” Opt. Express 18(20), 20949–20959 (2010). [CrossRef] [PubMed]
  12. Z. P. Lee, K. L. Carder, R. A. Arnone, “Deriving inherent optical properties from water color: A multiband quasi-analytical algorithm for optically deep waters,” Appl. Opt. 41(27), 5755–5772 (2002). [CrossRef] [PubMed]
  13. S. A. Garver, D. A. Siegel, “Inherent optical property inversion of ocean color spectra and its biogeochemical interpretation 1. Time series from the Sargasso Sea,” J. Geophys. Res. 102(C8), 18607–18625 (1997). [CrossRef]
  14. S. Maritorena, D. A. Siegel, A. R. Peterson, “Optimization of a semianalytical ocean color model for global-scale applications,” Appl. Opt. 41(15), 2705–2714 (2002). [CrossRef] [PubMed]
  15. D. A. Siegel, S. Maritorena, N. B. Nelson, D. A. Hansell, “Global distribution and dynamics of colored dissolved and detrital organic materials,” J. Geophys. Res. 107(C12), 3228 (2002). [CrossRef]
  16. M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, N. Hoepffner, “Variations in the light absorption coefficients of phytoplankton, non-algal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108(C7), 3211 (2003), doi:. [CrossRef]
  17. E. J. D’Sa, R. L. Miller, C. Del Castillo, “Bio-optical properties and ocean color algorithms for coastal waters influenced by the Mississippi River during a cold front,” Appl. Opt. 45(28), 7410–7428 (2006). [CrossRef] [PubMed]
  18. E. Siswanto, J. Tang, H. Yamaguchi, Y.-H. Ahn, J. Ishizaka, S. Yoo, S.-W. Kim, Y. Kiyomoto, K. Yamada, C. Chiang, H. Kawamura, “Empirical ocean-color algorithms to retrieve chlorophyll- a, total suspended matter, and colored dissolved organic matter absorption coefficient in the Yellow and East China Seas,” J. Oceanogr. 67(5), 627–650 (2011). [CrossRef]
  19. S. P. Tiwari, P. Shanmugam, “An optical model for the remote sensing of coloured dissolved organic matter in coastal/ocean waters,” Estuar. Coast. Shelf Sci. 93(4), 396–402 (2011). [CrossRef]
  20. S. Bélanger, M. Babin, P. Larouche, “An empirical ocean color algorithm for estimating the contribution of chromophoric dissolved organic matter to total light absorption in optically complex waters,” J. Geophys. Res. 113(C4), C04027 (2008), doi:. [CrossRef]
  21. H. Loisel, D. Stramski, “Estimation of the inherent optical properties of natural waters from the irradiance attenuation coefficient and reflectance in the presence of Raman scattering,” Appl. Opt. 39(18), 3001–3011 (2000). [CrossRef] [PubMed]
  22. Q. Dong, S. Shang, Z. P. Lee, “An algorithm to retrieve absorption coefficient of chromophoric dissolved organic matter from ocean color,” Remote Sens. Environ. 128, 259–267 (2013). [CrossRef]
  23. A. Matsuoka, S. B. Hooker, A. Bricaud, B. Gentili, M. Babin, “Estimating absorption coefficients of colored dissolved organic matter (CDOM) using a semi-analytical algorithm for southern Beaufort Sea waters: application to deriving concentrations of dissolved organic carbon from space,” Biogeosciences 10(2), 917–927 (2013). [CrossRef]
  24. IOCCG, “Remote Sensing of Inherent Optical Properties: Fundamentals, Tests of Algorithms, and Applications,” in Reports of the International Ocean-Colour Coordinating Group, 5, Z. P. Lee, ed. IOCCG, Dartmouth, (2006).
  25. P. J. Werdell, S. W. Bailey, “An improved in situ bio-optical data set for ocean color algorithm development and satellite data product validation,” Remote Sens. Environ. 98(1), 122–140 (2005). [CrossRef]
  26. B. Lubac, H. Loisel, N. Guiselin, R. Astoreca, L. F. Artigas, X. Mériaux, “Hyperspectral and multispectral ocean color inversions to detect Phaeocystis globosa blooms in coastal waters,” J. Geophys. Res. 113, C06026 (2008), doi:. [CrossRef]
  27. H. Loisel, X. Mériaux, A. Poteau, L. F. Artigas, B. Lubac, A. Gardel, J. Caillaud, S. Lesourd, “Analyze of the inherent optical properties of French Guiana coastal waters for remote sensing applications,” J. Coast. Res. 56, 1532–1536 (2009).
  28. V. Vantrepotte, H. Loisel, D. Dessailly, X. Mériaux, “Optical classification of contrasted coastal waters,” Remote Sens. Environ. 123, 306–323 (2012), doi:. [CrossRef]
  29. J. T. O. Kirk, “Monte Carlo study of the nature of the under- water light field in, and the relationships between optical properties of, turbid yellow waters,” Aust. J. Mar. Freshwater Res. 32(4), 517–532 (1981). [CrossRef]
  30. J. T. O. Kirk, “Dependence of relationship between inherent and apparent optical properties of water on solar altitude,” Limnol. Oceanogr. 29(2), 350–356 (1984). [CrossRef]
  31. J. T. O. Kirk, “Volume scattering function, average cosines, and the underwater light field,” Limnol. Oceanogr. 36(3), 455–467 (1991). [CrossRef]
  32. H. R. Gordon, “Can the Lambert–Beer law be applied to the diffuse attenuation coefficient of ocean water,” Limnol. Oceanogr. 34(8), 1389–1409 (1989). [CrossRef]
  33. A. Morel, H. Loisel, “Apparent Optical properties of oceanic water: dependence on the molecular scattering contribution,” Appl. Opt. 37(21), 4765–4776 (1998). [CrossRef] [PubMed]
  34. H. R. Gordon, W. R. McCluney, “Estimation of the depth of sunlight penetration in the sea for remote sensing,” Appl. Opt. 14(2), 413–416 (1975). [CrossRef] [PubMed]
  35. S. Sathyendranath, T. Platt, “The spectral irradiance field at the surface and in the interior of the ocean: A model for applications in oceanography and remote sensing,” J. Geophys. Res. 93(C8), 9270–9280 (1988). [CrossRef]
  36. Z. P. Lee, K. Du, R. Arnone, “A model for the diffuse attenuation coefficient of downwelling irradiance,” J. Geophys. Res. 110, C02016 (2005), doi:. [CrossRef]
  37. A. Morel, “Optical modeling of the upper ocean in relation to its biogenous matter content (case 1 water),” J. Geophys. Res. 93(C9), 10,749–10,768 (1988). [CrossRef]
  38. A. Morel, S. Maritorena, “Bio-optical properties of oceanic waters: A reappraisal,” J. Geophys. Res. 106(C4), 7163–7180 (2001). [CrossRef]
  39. A. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22(4), 709–722 (1977). [CrossRef]
  40. T. Zhang, F. Fell, Z. S. Liu, R. Preusker, J. Fischer, M. X. He, “Evaluating the performance of artificial neural network techniques for pigment retrieval from ocean color in case I waters,” J. Geophys. Res. 108(C9), 3286 (2003), doi:. [CrossRef]
  41. http://oceancolor.gsfc.nasa.gov/REPROCESSING/SeaWiFS/R5.1/k490_update.html .
  42. C. Jamet, H. Loisel, D. Dessailly, “Retrieval of the spectral diffuse attenuation coefficient Kd(λ) in open and coastal ocean waters using a neural network inversion,” J. Geophys. Res. 117(C10), C10023 (2012), doi:. [CrossRef]
  43. K. S. Baker, R. C. Smith, “Bio-optical classification and model of natural waters. 2,” Limnol. Oceanogr. 27(3), 500–509 (1982). [CrossRef]
  44. M. S. Twardowski, E. Boss, J. M. Sullivan, P. L. Donaghay, “Modeling the spectral shape of absorption by chromophoric dissolved organic matter,” Mar. Chem. 89(1-4), 69–88 (2004), doi:. [CrossRef]
  45. D. Jolivet, D. Ramon, P.-Y. Deschamps, F. Steinmetz, B. Fougnie, P. Henry, “How the ocean color products is limited by atmospheric correction,” in Proceedings of Envisat Symposium 2007, Montreux, Switzerland (2007).
  46. C. Hu, L. Feng, Z.-P. Lee, C. O. Davis, A. Mannino, C. R. McClain, B. A. Franz, “Dynamic range and sensitivity requirements of satellite ocean color sensors: learning from the past,” Appl. Opt. 51(25), 6045–6062 (2012). [CrossRef] [PubMed]
  47. C. Jamet, H. Loisel, C. P. Kuchinke, K. Ruddick, G. Zibordi, H. Feng, “Comparison of three SeaWiFS atmospheric correction algorithms for turbid waters using AERONET-OC measurements,” Remote Sens. Environ. 115(8), 1955–1965 (2011). [CrossRef]
  48. C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, 1994).
  49. R. J. Hyndman, Y. Fan, “Sample Quantiles in Statistical Packages,” Am. Stat. 50(4), 361–365 (1996).
  50. B. Lubac, H. Loisel, “Variability and classification of remote sensing reflectance spectra in the eastern English Channel and southern North Sea,” Remote Sens. Environ. 110(1), 45–58 (2007). [CrossRef]
  51. ESA-report, (ESA, 2012). http://earth.eo.esa.int/pcs/envisat/meris/documentation/meris_3rd_reproc/A879-NT-017ACR_v1.0.pdf .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited