OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 11 — Jun. 2, 2014
  • pp: 13125–13137

Tunable microwave generation of a monolithic dual-wavelength distributed feedback laser

Yen-Hua Lo, Yu-Chang Wu, Shun-Chieh Hsu, Yi-Chia Hwang, Bai-Ci Chen, and Chien-Chung Lin  »View Author Affiliations


Optics Express, Vol. 22, Issue 11, pp. 13125-13137 (2014)
http://dx.doi.org/10.1364/OE.22.013125


View Full Text Article

Enhanced HTML    Acrobat PDF (2848 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The dynamic behavior of a monolithic dual-wavelength distributed feedback laser was fully investigated and mapped. The combination of different driving currents for master and slave lasers can generate a wide range of different operational modes, from single mode, period 1 to chaos. Both the optical and microwave spectrum were recorded and analyzed. The detected single mode signal can continuously cover from 15GHz to 50GHz, limited by photodetector bandwidth. The measured optical four-wave-mixing pattern indicates that a 70GHz signal can be generated by this device. By applying rate equation analysis, the important laser parameters can be extracted from the spectrum. The extracted relaxation resonant frequency is found to be 8.96GHz. With the full operational map at hand, the suitable current combination can be applied to the device for proper applications.

© 2014 Optical Society of America

OCIS Codes
(130.0250) Integrated optics : Optoelectronics
(130.3120) Integrated optics : Integrated optics devices
(140.5960) Lasers and laser optics : Semiconductor lasers
(250.5300) Optoelectronics : Photonic integrated circuits
(350.4010) Other areas of optics : Microwaves
(060.5625) Fiber optics and optical communications : Radio frequency photonics

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: March 24, 2014
Revised Manuscript: May 10, 2014
Manuscript Accepted: May 11, 2014
Published: May 22, 2014

Citation
Yen-Hua Lo, Yu-Chang Wu, Shun-Chieh Hsu, Yi-Chia Hwang, Bai-Ci Chen, and Chien-Chung Lin, "Tunable microwave generation of a monolithic dual-wavelength distributed feedback laser," Opt. Express 22, 13125-13137 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-11-13125


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. J. Simonis, K. G. Purchase, “Optical generation, distribution, and control of microwaves using laser heterodyne,” IEEE Trans. Microw. Theory Tech. 38(5), 667–669 (1990). [CrossRef]
  2. X.-Q. Qi, J.-M. Liu, “Photonic microwave applications of the dynamics of semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1198–1211 (2011). [CrossRef]
  3. J. Yao, “Microwave photonics,” J. Lightwave Technol. 27, 314–335 (2009).
  4. D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev. 7(4), 506–538 (2013). [CrossRef]
  5. A. J. Seeds, “Microwave photonics,” IEEE Trans. Microwave Theory Tech. 50(3), 877–887 (2002). [CrossRef]
  6. M. J. Fice, E. Rouvalis, F. van Dijk, A. Accard, F. Lelarge, C. C. Renaud, G. Carpintero, A. J. Seeds, “146-GHz millimeter-wave radio-over-fiber photonic wireless transmission system,” Opt. Express 20(2), 1769–1774 (2012). [CrossRef] [PubMed]
  7. J.-M. Liu, H.-F. Chen, S. Tang, “Synchronized chaotic optical communications at high bit rates,” IEEE J. Quantum Electron. 38, 1184–1196 (2002).
  8. A. Murakami, K. Kawashima, K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39, 1196–1204 (2003).
  9. L. Chrostowski, Z. Xiaoxue, C. J. Chang-Hasnain, “Microwave performance of optically injection-locked VCSELs,” IEEE Trans. Microwave Theory Tech. 54(2), 788–796 (2006). [CrossRef]
  10. U. Feiste, D. J. As, A. Ehrhardt, “18 GHz all-optical frequency locking and clock recovery using a self-pulsating two-section DFB-laser,” IEEE Photon. Technol. Lett. 6(1), 106–108 (1994). [CrossRef]
  11. G. J. Schneider, J. A. Murakowski, C. A. Schuetz, S. Shi, D. W. Prather, “Radiofrequency signal-generation system with over seven octaves of continuous tuning,” Nat. Photon. 7(2), 118–122 (2013). [CrossRef]
  12. Y.-S. Juan, F.-Y. Lin, “Photonic generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor laser,” IEEE Photon. J. 3(4), 644–650 (2011). [CrossRef]
  13. G. E. Villanueva, P. Perez-Millan, J. Palaci, J. L. Cruz, M. V. Andres, J. Marti, “Dual-wavelength DFB erbium-doped fiber laser with tunable wavelength spacing,” IEEE Photon. Technol. Lett. 22(4), 254–256 (2010). [CrossRef]
  14. G. E. Villanueva, J. Palací, J. L. Cruz, M. V. Andrés, J. Martí, P. Pérez-Millán, “High frequency microwave signal generation using dual-wavelength emission of cascaded DFB fiber lasers with wavelength spacing tunability,” Opt. Commun. 283(24), 5165–5168 (2010). [CrossRef]
  15. B. Sartorius, M. Mohrle, U. Feiste, “12-64 GHz continuous frequency tuning in self-pulsating 1.55-mm multiquantum-well DFB lasers,” IEEE J. Sel. Top. Quantum Electron. 1(2), 535–538 (1995). [CrossRef]
  16. X. Wang, W. Mao, M. Al-Mumin, S. Pappert, H. Jin, L. Guifang, “Optical generation of microwave/millimeter-wave signals using two-section gain-coupled DFB lasers,” IEEE Photon. Technol. Lett. 11(10), 1292–1294 (1999). [CrossRef]
  17. N. A. Naderi, F. Grillot, K. Yang, J. B. Wright, A. Gin, L. F. Lester, “Two-color multi-section quantum dot distributed feedback laser,” Opt. Express 18(26), 27028–27035 (2010). [CrossRef] [PubMed]
  18. J. Huang, C. Sun, B. Xiong, Y. Luo, “Y-branch integrated dual wavelength laser diode for microwave generation by sideband injection locking,” Opt. Express 17(23), 20727–20734 (2009). [CrossRef] [PubMed]
  19. C. Laperle, M. Svilans, M. Poirier, M. Tetu, “Frequency multiplication of microwave signals by sideband optical injection locking using a monolithic dual-wavelength DFB laser device,” IEEE Trans. Microwave Theory Tech. 47(7), 1219–1224 (1999). [CrossRef]
  20. N. Kim, S.-P. Han, H.-C. Ryu, H. Ko, J.-W. Park, D. Lee, M. Y. Jeon, K. H. Park, “Distributed feedback laser diode integrated with distributed Bragg reflector for continuous-wave terahertz generation,” Opt. Express 20(16), 17496–17502 (2012). [CrossRef] [PubMed]
  21. N. Kim, J. Shin, E. Sim, C. W. Lee, D.-S. Yee, M. Y. Jeon, Y. Jang, K. H. Park, “Monolithic dual-mode distributed feedback semiconductor laser for tunable continuous-wave terahertz generation,” Opt. Express 17(16), 13851–13859 (2009). [CrossRef] [PubMed]
  22. G. Carpintero, K. Balakier, Z. Yang, R. C. Guzman, A. Corradi, A. Jimenez, G. Kervella, M. J. Fice, M. Lamponi, M. Chtioui, F. van Dijk, C. C. Renaud, A. Wonfor, E. A. J. M. Bente, R. V. Penty, I. H. White, and A. J. Seeds, “Photonic integrated circuits for millimeter-wave wireless communications,” J. Lightwave Technol. (2014).
  23. M. Zanola, M. J. Strain, G. Giuliani, M. Sorel, “Monolithically integrated DFB lasers for tunable and narrow linewidth millimeter-wave generation,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500406 (2013). [CrossRef]
  24. D. Liu, C. Sun, B. Xiong, Y. Luo, “Suppression of chaos in integrated twin DFB lasers for millimeter-wave generation,” Opt. Express 21(2), 2444–2451 (2013). [CrossRef] [PubMed]
  25. C. Zhang, S. Liang, H. Zhu, W. Wang, “Widely tunable dual-mode distributed feedback laser fabricated by selective area growth technology integrated with Ti heaters,” Opt. Lett. 38(16), 3050–3053 (2013). [CrossRef] [PubMed]
  26. M. Soldo, N. Gibbons, and G. Giuliani, “Narrow linewidth mm-wave signal generation based on two phase-locked DFB lasers mutually coupled via four wave mixing,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference (Optical Society of America, Baltimore, Maryland, 2009), p. JThE32. [CrossRef]
  27. C.-Y. Chien, Y.-H. Lo, Y.-C. Wu, S.-C. Hsu, H.-R. Tseng, C.-C. Lin, “Compact photonic integrated chip for tunable microwave generation,” IEEE Photon. Technol. Lett. 26(5), 490–493 (2014). [CrossRef]
  28. K. Inoue, T. Mukai, T. Saitoh, “Nearly degenerate four‐wave mixing in a traveling‐wave semiconductor laser amplifier,” Appl. Phys. Lett. 51(14), 1051–1053 (1987). [CrossRef]
  29. C.-C. Lin, C.-Y. Chien, Y.-C. Wu, H.-C. Kuo, and C.-T. Lin, “Evaluation of tunable microwave signals generated by monolithic two-section distributed feedback lasers,” in CLEO: 2013 (Optical Society of America, San Jose, California, 2013), p. JTh2A.104.
  30. J.-M. Liu, T. B. Simpson, “Four-wave mixing and optical modulation in a semiconductor laser,” IEEE J. Quantum Electron. 30(4), 957–965 (1994). [CrossRef]
  31. I. Petitbon, P. Gallion, G. Debarge, C. Chabran, “Locking bandwidth and relaxation oscillations of an injection-locked semiconductor laser,” IEEE J. Quantum Electron. 24, 148–154 (1988).
  32. F. Mogensen, H. Olesen, G. Jacobsen, “Locking conditions and stability properties for a semiconductor laser with external light injection,” IEEE J. Quantum Electron. 21, 784–793 (1985).
  33. A. Hurtado, J. Mee, M. Nami, I. D. Henning, M. J. Adams, L. F. Lester, “Tunable microwave signal generator with an optically-injected 1310 nm QD-DFB laser,” Opt. Express 21(9), 10772–10778 (2013). [CrossRef] [PubMed]
  34. C.-C. Lin, G. Yoffe, M. Emanuel, S. Rishton, D. Ton, S. Zou, B. Lu, and B. Pezeshki, “Monolithically integrated high speed DFB BH laser arrays for 10Gbbased LX4 application,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference (Optical Society of America, Anaheim, California, 2006), p. OWI84.
  35. T. B. Simpson, J. M. Liu, A. Gavrielides, V. Kovanis, P. M. Alsing, “Period-doubling cascades and chaos in a semiconductor laser with optical injection,” Phys. Rev. A 51(5), 4181–4185 (1995). [CrossRef] [PubMed]
  36. Y. Kotaki, S. Ogita, M. Matsuda, Y. Kuwahara, H. Ishikawa, “Tunable, narrow-linewidth and high-power lambda /4-shifted DFB laser,” Electron. Lett. 25(15), 990–992 (1989). [CrossRef]
  37. B. Dahmani, L. Hollberg, R. Drullinger, “Frequency stabilization of semiconductor lasers by resonant optical feedback,” Opt. Lett. 12(11), 876–878 (1987). [CrossRef] [PubMed]
  38. K. Petermann, “External optical feedback phenomena in semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 1(2), 480–489 (1995). [CrossRef]
  39. H.-K. Sung, E. K. Lau, M. C. Wu, “Optical single sideband modulation using strong optical injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett. 19(13), 1005–1007 (2007). [CrossRef]
  40. P. Gallion, G. Debarge, C. Chabran, “Output spectrum of an unlocked optically driven semiconductor laser,” Opt. Lett. 11(5), 294–296 (1986). [CrossRef] [PubMed]
  41. J. Sacher, D. Baums, P. Panknin, W. Elsässer, E. O. Göbel, “Intensity instabilities of semiconductor lasers under current modulation, external light injection, and delayed feedback,” Phys. Rev. A 45(3), 1893–1905 (1992). [CrossRef] [PubMed]
  42. V. Kovanis, A. Gavrielides, T. B. Simpson, J. M. Liu, “Instabilities and chaos in optically injected semiconductor lasers,” Appl. Phys. Lett. 67(19), 2780–2782 (1995). [CrossRef]
  43. S.-C. Chan, S.-K. Hwang, J.-M. Liu, “Period-one oscillation for photonic microwave transmission using an optically injected semiconductor laser,” Opt. Express 15(22), 14921–14935 (2007). [CrossRef] [PubMed]
  44. T. B. Simpson, J. M. Liu, “Phase and amplitude characteristics of nearly degenerate four‐wave mixing in Fabry–Perot semiconductor lasers,” J. Appl. Phys. 73(5), 2587–2589 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited