OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 11 — Jun. 2, 2014
  • pp: 13146–13154

Mapping the refractive index of optically transparent samples by means of optical nanoantenna attached to fiber microaxicon

Aleksandr A. Kuchmizhak, Dmitriy V. Pavlov, Yuri N. Kulchin, and Oleg B. Vitrik  »View Author Affiliations

Optics Express, Vol. 22, Issue 11, pp. 13146-13154 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2094 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate analytically and numerically that the detection of the spectral response of a single spherical Au nanoantenna allows one to map very small (down to 5·10−4 RIU) variations of the refractive index of an optically transparent sample. Spectral shift of the dipole local plasmon resonance wavelength of the nanoantenna and the spectral sensitivity of the method developed was estimated by using simple analytical quasi-static model. A pointed scanning probe based on fiber microaxicon with the Au spherical nanoantenna attached to its tip was proposed to realize the RI mapping method. Finite-difference time-domain numerical simulations of the spectral properties of the proposed probe are in good agreement with the theoretical quasi-electrostatic estimations for a radius of the nanoantenna not exceeding the skin depth of Au.

© 2014 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(260.3910) Physical optics : Metal optics
(260.5740) Physical optics : Resonance
(250.5403) Optoelectronics : Plasmonics

ToC Category:

Original Manuscript: March 31, 2014
Revised Manuscript: May 14, 2014
Manuscript Accepted: May 17, 2014
Published: May 22, 2014

Aleksandr A. Kuchmizhak, Dmitriy V. Pavlov, Yuri N. Kulchin, and Oleg B. Vitrik, "Mapping the refractive index of optically transparent samples by means of optical nanoantenna attached to fiber microaxicon," Opt. Express 22, 13146-13154 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. J. Huber, D. Kazantsev, F. Keilmann, J. Wittborn, R. Hillenbrand, “Simultaneous ir material recognition and conductivity mapping by nanoscale near-field microscopy,” Adv. Mater. 19(17), 2209–2212 (2007). [CrossRef]
  2. P. Bharadwaj, B. Deutsch, L. Novotny, “Optical antennas,” Adv. Opt. Photon 1(3), 438–483 (2009). [CrossRef]
  3. L. Novotny, R. X. Bian, X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79(4), 645–648 (1997). [CrossRef]
  4. A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6(3), 355–360 (2006). [CrossRef] [PubMed]
  5. T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, N. F. van Hulst, “λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7(1), 28–33 (2007). [CrossRef] [PubMed]
  6. T. Lee, E. Lee, S. Oh, J. W. Hahn, “Imaging heterogeneous nanostructures with a plasmonic resonant ridge aperture,” Nanotechnology 24(14), 145502 (2013). [CrossRef] [PubMed]
  7. L. Novotny and B. Hecht, Principles of Nano-Optics, (Cambridge University Press, 2006).
  8. M. Mivelle, T. S. van Zanten, L. Neumann, N. F. van Hulst, M. F. Garcia-Parajo, “Ultrabright bowtie nanoaperture antenna probes studied by single molecule fluorescence,” Nano Lett. 12(11), 5972–5978 (2012). [CrossRef] [PubMed]
  9. L. Wang, E. X. Jin, S. M. Uppuluri, X. Xu, “Contact optical nanolithography using nanoscale C-shaped apertures,” Opt. Express 14(21), 9902–9908 (2006). [CrossRef] [PubMed]
  10. T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26(24), 1972–1974 (2001). [CrossRef] [PubMed]
  11. T. Taubner, R. Hillenbrand, F. Keilmann, “Nanoscale polymer recognition by spectral signature in scattering infrared near-field microscopy,” Appl. Phys. Lett. 85(21), 5064 (2004). [CrossRef]
  12. T. Taubner, F. Keilmann, R. Hillenbrand, “Nanoscale-resolved subsurface imaging by scattering-type near-field optical microscopy,” Opt. Express 13(22), 8893–8899 (2005). [CrossRef] [PubMed]
  13. E. J. Sánchez, L. Novotny, X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82(20), 4014–4017 (1999). [CrossRef]
  14. F. Huth, A. Chuvilin, M. Schnell, I. Amenabar, R. Krutokhvostov, S. Lopatin, R. Hillenbrand, “Resonant antenna probes for tip-enhanced infrared near-field microscopy,” Nano Lett. 13(3), 1065–1072 (2013). [CrossRef] [PubMed]
  15. L. Neumann, J. van ’t Oever, N. F. van Hulst, “A resonant scanning dipole-antenna probe for enhanced nanoscale imaging,” Nano Lett. 13(11), 5070–5074 (2013). [CrossRef] [PubMed]
  16. Y. N. Kulchin, O. B. Vitrik, A. A. Kuchmizhak, E. V. Pustovalov, A. V. Nepomnyashchii, “Cavity-based Fabry-Perot probe with protruding subwavelength aperture,” Opt. Lett. 36(19), 3945–3947 (2011). [CrossRef] [PubMed]
  17. K.-S. Lee, M.-A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition,” J. Phys. Chem. B 110(39), 19220–19225 (2006). [CrossRef] [PubMed]
  18. M. Born and E. Wolf, The Principles of Optics (Pergamon Press, 1964).
  19. P. G. Etchegoin, E. C. Le Ru, M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125(16), 164705 (2006). [CrossRef] [PubMed]
  20. P. B. Johnson, R. W. Christy, “Optical-constants of noble-metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]
  21. This curve was obtained by using the Eq. (8) and the condition (6).
  22. K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003). [CrossRef]
  23. G. W. Bryant, F. J. García de Abajo, J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett. 8(2), 631–636 (2008). [CrossRef] [PubMed]
  24. www.yokogawa.com .
  25. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).
  26. A. A. Kuchmizhak, S. O. Gurbatov, A. A. Nepomniaschii, O. B. Vitrik, Yu. N. Kulchin, “High-quality fiber microaxicons fabricated by a modified chemical etching method for laser focusing and generation of Bessel-like beams,” Appl. Opt. 53(5), 937–943 (2014). [CrossRef] [PubMed]
  27. In accordance with our numerical simulations the presence of the microaxicon red-shifts the λSP0(a) dependence approximately on 20 nm in comparison with the single nanoparticles in vacuo.
  28. B. M. Ross, L. P. Lee, “Comparison of near- and far-field measures for plasmon resonance of metallic nanoparticles,” Opt. Lett. 34(7), 896–898 (2009). [CrossRef] [PubMed]
  29. K. M. Mayer, J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011). [CrossRef] [PubMed]
  30. Z. Pan, J. Guo, “Enhanced optical absorption and electric field resonance in diabolo metal bar optical antennas,” Opt. Express 21(26), 32491–32500 (2013). [CrossRef] [PubMed]
  31. T. Grosjean, M. Mivelle, F. I. Baida, G. W. Burr, U. C. Fischer, “Diabolo nanoantenna for enhancing and confining the magnetic optical field,” Nano Lett. 11(3), 1009–1013 (2011). [CrossRef] [PubMed]
  32. T. Grosjean, S. S. Saleh, M. A. Suarez, I. A. Ibrahim, V. Piquerey, D. Charraut, P. Sandoz, “Fiber microaxicons fabricated by a polishing technique for the generation of Bessel-like beams,” Appl. Opt. 46(33), 8061–8067 (2007). [CrossRef] [PubMed]
  33. A. I. Kuznetsov, R. Kiyan, B. N. Chichkov, “Laser fabrication of 2D and 3D metal nanoparticle structures and arrays,” Opt. Express 18(20), 21198–21203 (2010). [CrossRef] [PubMed]
  34. P. Anger, P. Bharadwaj, L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited