OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 11 — Jun. 2, 2014
  • pp: 13170–13189

Remote open-path cavity-ringdown spectroscopic sensing of trace gases in air, based on distributed passive sensors linked by km-long optical fibers

Yabai He, Chunjiang Jin, Ruifeng Kan, Jianguo Liu, Wenqing Liu, Julian Hill, Ian M. Jamie, and Brian J. Orr  »View Author Affiliations


Optics Express, Vol. 22, Issue 11, pp. 13170-13189 (2014)
http://dx.doi.org/10.1364/OE.22.013170


View Full Text Article

Enhanced HTML    Acrobat PDF (1911 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A continuous-wave, rapidly swept cavity-ringdown spectroscopic technique has been developed for localized atmospheric sensing of trace gases at remote sites. It uses one or more passive open-path optical sensor units, coupled by optical fiber over distances of >1 km to a single transmitter/receiver console incorporating a photodetector and a swept-frequency diode laser tuned to molecule-specific near-infrared wavelengths. Ways to avoid interference from stimulated Brillouin scattering in long optical fibers have been devised. This rugged open-path system, deployable in agricultural, industrial, and natural atmospheric environments, is used to monitor ammonia in air. A noise-limited minimum detectable mixing ratio of ~11 ppbv is attained for ammonia in nitrogen at atmospheric pressure.

© 2014 Optical Society of America

OCIS Codes
(010.1280) Atmospheric and oceanic optics : Atmospheric composition
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(280.3420) Remote sensing and sensors : Laser sensors

ToC Category:
Sensors

History
Original Manuscript: February 28, 2014
Revised Manuscript: May 14, 2014
Manuscript Accepted: May 14, 2014
Published: May 22, 2014

Citation
Yabai He, Chunjiang Jin, Ruifeng Kan, Jianguo Liu, Wenqing Liu, Julian Hill, Ian M. Jamie, and Brian J. Orr, "Remote open-path cavity-ringdown spectroscopic sensing of trace gases in air, based on distributed passive sensors linked by km-long optical fibers," Opt. Express 22, 13170-13189 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-11-13170


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. W. Busch and M. A. Busch, eds., Cavity-Ringdown Spectroscopy: an Ultratrace-Absorption Measurement Technique, Vol. 720 of ACS Symposium Series (Am. Chem. Soc., 1999).
  2. G. Berden, R. Peeters, G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19(4), 565–607 (2000). [CrossRef]
  3. B. A. Paldus, A. A. Kachanov, “An historical overview of cavity-enhanced methods,” Can. J. Phys. 83(10), 975–999 (2005). [CrossRef]
  4. G. Berden and R. Engeln, eds., Cavity Ring-Down Spectroscopy: Techniques and Applications (Wiley-Blackwell, 2009).
  5. B. J. Orr, Y. He, “Rapidly swept continuous-wave cavity-ringdown spectroscopy,” Chem. Phys. Lett. 512(1-3), 1–20 (2011). [CrossRef]
  6. Y. He, B. J. Orr, “Detection of trace gases by rapidly-swept continuous-wave cavity ringdown spectroscopy: pushing the limits of sensitivity,” Appl. Phys. B 85(2-3), 355–364 (2006). [CrossRef]
  7. Y. He, B. J. Orr, “Rapidly swept, continuous-wave cavity ringdown spectroscopy with optical heterodyne detection: single- and multi-wavelength sensing of gases,” Appl. Phys. B 75(2-3), 267–280 (2002). [CrossRef]
  8. Y. He, R. Kan, F. V. Englich, W. Liu, B. J. Orr, “Simultaneous multi-laser, multi-species trace-level sensing of gas mixtures by rapidly swept continuous-wave cavity-ringdown spectroscopy,” Opt. Express 18(19), 20059–20071 (2010). [CrossRef] [PubMed]
  9. Y. He, B. J. Orr, “Rapid measurement of cavity ringdown absorption spectra with a swept-frequency laser,” Appl. Phys. B 79(8), 941–945 (2004). [CrossRef]
  10. Y. He, B. J. Orr, “Continuous-wave cavity ringdown absorption spectroscopy with a swept-frequency laser: rapid spectral sensing of gas-phase molecules,” Appl. Opt. 44(31), 6752–6761 (2005). [CrossRef] [PubMed]
  11. I. T. Sorokina and K. L. Vodopyanov, eds., Solid-State Mid-Infrared Sources (Springer, 2003).
  12. F. Capasso, R. Colombelli, C. Gmachl, T. L. Myers, M. S. Taubman, R. M. Williams, C. G. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco, A. Y. Cho, A. M. Sergent, H. C. Liu, E. A. Whittaker, “Quantum cascade lasers: ultrahigh-speed operation, optical wireless communication, narrow linewidth, and far-infrared emission,” IEEE J. Quantum Electron. 38(6), 511–532 (2002). [CrossRef]
  13. R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010). [CrossRef]
  14. M. S. Taubman, P. M. Aker, D. C. Scott, M. D. Wojcik, B. D. Cannon, J. T. Munley, T. L. Myers, V. T. Nguyen, C. A. Bonebrake, and J. F. Schultz, “Long wave infrared cavity enhanced sensors,” Pacific Northwest National Laboratory Report PNNL-15103 (October 2004), Fig. 2.1, p. 2.2. http://www.pnl.gov/main/publications/external/technical_reports/PNNL-15103.pdf
  15. Y. He, B. J. Orr, “Optical heterodyne signal generation and detection in cavity ringdown spectroscopy based on a rapidly swept cavity,” Chem. Phys. Lett. 335(3-4), 215–220 (2001). [CrossRef]
  16. J. Ye, “Ultrasensitive high resolution laser spectroscopy and its application to optical frequency standards,” Ph. D. thesis (University of Colorado, 1997); note Fig. 6.2, p. 121.
  17. J. Ye, L.-S. Ma, and J. L. Hall, “Using FM methods with molecules in a high finesse cavity: a demonstrated path to 10−12 absorption sensitivity,” Chap. 15 in K. W. Busch and M. A. Busch, eds., Cavity-Ringdown Spectroscopy: an Ultratrace-Absorption Measurement Technique, Vol. 720 of ACS Symposium Series (Am. Chem. Soc., 1999), pp. 233–253; note Fig. 3, p. 241.
  18. M. D. Levenson, B. A. Paldus, T. G. Spence, C. C. Harb, R. N. Zare, M. J. Lawrence, R. L. Byer, “Frequency-switched heterodyne cavity ringdown spectroscopy,” Opt. Lett. 25(12), 920–922 (2000). [CrossRef] [PubMed]
  19. Y. He, B. J. Orr, “Ringdown and cavity-enhanced absorption spectroscopy using a continuous-wave tunable diode laser and a rapidly swept optical cavity,” Chem. Phys. Lett. 319(1-2), 131–137 (2000). [CrossRef]
  20. J. Poirson, F. Bretenaker, M. Vallet, A. Le Floch, “Analytical and experimental study of ringing effects in a Fabry–Perot cavity. Application to the measurement of high finesses,” J. Opt. Soc. Am. B 14(11), 2811–2817 (1997). [CrossRef]
  21. M. J. Lawrence, B. Wilke, M. E. Husman, E. K. Gustafson, R. L. Byer, “Dynamic response of a Fabry–Perot interferometer,” J. Opt. Soc. Am. B 16(4), 523–532 (1999). [CrossRef]
  22. J. W. Hahn, Y. S. Yoo, J. Y. Lee, J. W. Kim, H.-W. Lee, “Cavity ringdown spectroscopy with a continuous-wave laser: calculation of coupling efficiency and a new spectrometer design,” Appl. Opt. 38(9), 1859–1866 (1999). [CrossRef] [PubMed]
  23. J. Morville, D. Romanini, M. Chenevier, A. Kachanov, “Effects of laser phase noise on the injection of a high-finesse cavity,” Appl. Opt. 41(33), 6980–6990 (2002). [CrossRef] [PubMed]
  24. B. Bakowski, L. Corner, G. Hancock, R. Kotchie, R. Peverall, G. A. D. Ritchie, “Cavity-enhanced absorption spectroscopy with a rapidly swept diode laser,” Appl. Phys. B 75(6-7), 745–750 (2002). [CrossRef]
  25. M. Mazurenka, A. J. Orr-Ewing, R. R. Peverall, G. A. D. Ritchie, “Cavity ring-down and cavity enhanced spectroscopy using diode lasers,” Ann. Rep. Prog. Chem. C: Phys. Chem. 101, 100–142 (2005). [CrossRef]
  26. J. H. van Helden, R. Peverall, and G. A. D. Ritchie, “Cavity enhanced techniques using continuous wave lasers,” Chap. 2 in G. Berden and R. Engeln, eds., Cavity Ring-Down Spectroscopy: Techniques and Applications (Wiley-Blackwell, 2009), pp. 27–56.
  27. T. G. Spence, C. C. Harb, B. A. Paldus, R. N. Zare, B. Willke, R. L. Byer, “A laser-locked cavity ring-down spectrometer employing an analog detection scheme,” Rev. Sci. Instrum. 71(2), 347–353 (2000). [CrossRef]
  28. B. G. Fidric, R. A. Provençal, S. M. Tan, E. R. Crosson, A. A. Kachanov, B. A. Paldus, “Bananas, explosives and the future of cavity ring-down spectroscopy,” Opt. Photon. News 14(7), 24–29 (2003). [CrossRef]
  29. E. R. Crosson, “A cavity ring-down analyzer for measuring atmospheric levels of methane, carbon dioxide, and water vapor,” Appl. Phys. B 92(3), 403–408 (2008). [CrossRef]
  30. For example: Picarro, Inc., (Sunnyvale, CA 94085, USA); http://www.picarro.com/gas_analyzers
  31. G. Neri, A. Lacquaniti, G. Rizzo, N. Donato, M. Latino, M. Buemi, “Real-time monitoring of breath ammonia during haemodialysis: use of ion mobility spectrometry (IMS) and cavity ring-down spectroscopy (CRDS) techniques,” Nephrol. Dial. Transplant. 27(7), 2945–2952 (2012). [CrossRef] [PubMed]
  32. F. M. Schmidt, O. Vaittinen, M. Metsälä, M. Lehto, C. Forsblom, P.-H. Groop, L. Halonen, “Ammonia in breath and emitted from skin,” J Breath Res 7(1), 017109 (2013). [CrossRef] [PubMed]
  33. O. Vaittinen, F. M. Schmidt, M. Metsälä, L. Halonen, “Exhaled breath biomonitoring using laser spectroscopy,” Current Analyt. Chem. 9(3), 463–475 (2013). [CrossRef]
  34. A. B. Ruffin, “Stimulated Brillouin scattering: an overview of measurements, system impairments, and applications,” in P. A. Williams and G. W. Day, eds., Technical Digest: Symposium on Optical Fiber Measurements,2004, NIST Special Publication 1024 (National Institute of Standards and Technology, 2004), pp. 23–28; http://www.nist.gov/manuscript-publication-search.cfm?pub_id=31763
  35. B. L. Fawcett, A. M. Parkes, D. E. Shallcross, A. J. Orr-Ewing, “Trace detection of methane using continuous wave cavity ring-down spectroscopy at 1.65 μm,” Phys. Chem. Chem. Phys. 4(24), 5960–5965 (2002). [CrossRef]
  36. R. Kan, W. Liu, Y. Zhang, J. Liu, M. Wang, D. Chen, J. Chen, Y. Cui, “Large scale gas leakage monitoring with tunable diode laser absorption spectroscopy,” Chin. Opt. Lett. 4, 116–118 (2006).
  37. R. Kan, W. Liu, Y. Zhang, J. Liu, M. Wang, D. Chen, J. Chen, Y. Cui, “A high sensitivity spectrometer with tunable diode laser for ambient methane monitoring,” Chin. Opt. Lett. 5, 54–57 (2007).
  38. C. Wang, N. Srivastava, B. A. Jones, R. B. Reese, “A novel multiple species ringdown spectrometer for in situ measurements of methane, carbon dioxide, and carbon isotope,” Appl. Phys. B 92(2), 259–270 (2008). [CrossRef]
  39. L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L .H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, Vl. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013); see also earlier editions of the HITRAN database (e.g., 2008 and 2004).
  40. S. Kirschke, P. Bousquet, P. Ciais, M. Saunois, J. G. Canadell, E. J. Dlugokencky, P. Bergamaschi, D. Bergmann, D. R. Blake, L. Bruhwiler, P. Cameron-Smith, S. Castaldi, F. Chevallier, L. Feng, A. Fraser, M. Heimann, E. L. Hodson, S. Houweling, B. Josse, P. J. Fraser, P. B. Krummel, J.-F. Lamarque, R. L. Langenfelds, C. Le Quéré, V. Naik, S. O’Doherty, P. I. Palmer, I. Pison, D. Plummer, B. Poulter, R. G. Prinn, M. Rigby, B. Ringeval, M. Santini, M. Schmidt, D. T. Shindell, I. J. Simpson, R. Spahni, L. P. Steele, S. A. Strode, K. Sudo, S. Szopa, G. R. van der Werf, A. Voulgarakis, M. van Weele, R. F. Weiss, J. E. Williams, G. Zeng, “Three decades of global methane sources and sinks,” Nat. Geosci. 6(10), 813–823 (2013). [CrossRef]
  41. The CSIRO Flagship Livestock Methane Research Cluster (LMRC) is outlined at http://www.csiro.au/lmrc
  42. D. McDermitt, G. Burba, L. Xu, T. Anderson, A. Komissarov, B. Riensche, J. Schedlbauer, G. Starr, D. Zona, W. Oeschel, S. Oberbauer, S. Hastings, “A new low-power, open-path instrument for measuring methane flux by eddy covariance,” Appl. Phys. B 102(2), 391–405 (2011). [CrossRef]
  43. M. A. Sutton, J. W. Erisman, F. Dentener, D. Möller, “Ammonia in the environment: from ancient times to the present,” Environ. Pollut. 156(3), 583–604 (2008). [CrossRef] [PubMed]
  44. C. R. Flechard, R.-S. Massad, B. Loubet, E. Personne, D. Simpson, J. O. Bash, E. J. Cooter, E. Nemitz, M. A. Sutton, “Advances in understanding, models and parameterizations of biosphere-atmosphere ammonia exchange,” Biogeosciences 10(7), 5183–5225 (2013). [CrossRef]
  45. O. T. Denmead, D. Chen, D. Rowell, Z. Loh, J. Hill, S. Muir, D. W. T. Griffith, T. Naylor, M. Bai, F. Phillips, and S. McGinn, “Gaseous nitrogen emissions from Australian cattle feedlots,” Chapter 3 in M. A Sutton, K. E. Mason, L. J. Sheppard, H. Sverdrup, R. Haeuber, and W. K. Hicks, eds., Nitrogen Deposition, Critical Loads and Biodiversity (Springer, 2013); ISBN 978–94–007–7938–9.
  46. B. Arnon, N. Hutchings, F. P. Vinther, P. K. Nielsem, H. D. Poulsen, I. S. Kristensen, and S. Pietrzak, “Analysis of methodologies for calculating greenhouse gas and ammonia emissions and nutrient balances,” in J. Selenius, L. Baudouin, and A. M. Kremer, eds., Eurostat Methodologies and Working Papers; ISSN 1977–0375 (European Union, 2011). [CrossRef]
  47. K. von Bobrutzki, C. F. Braban, D. Famulari, S. K. Jones, T. Blackall, T. E. L. Smith, M. Blom, H. Coe, M. Gallagher, M. Ghalaieny, M. R. McGillen, C. J. Percival, J. D. Whitehead, R. Ellis, J. Murphy, A. Mohacsi, A. Pogany, H. Junninen, S. Rantanen, M. A. Sutton, E. Nemitz, “Field inter-comparison of eleven atmospheric ammonia measurement techniques,” Atmospheric Measurement Techniques 3(1), 91–112 (2010). [CrossRef]
  48. A. A. Kachanov, E. R. Crosson, B. A. Paldus, “Tunable diode lasers: expanding the horizon for laser absorption spectroscopy,” Opt. Photonics News 16(7), 44–50 (2005). [CrossRef]
  49. E. D. Thoma, R. C. Shores, E. L. Thompson, D. B. Harris, S. A. Thorneloe, R. M. Varma, R. A. Hashmonay, M. T. Modrak, D. F. Natschke, H. A. Gamble, “Open-path tunable diode laser absorption spectroscopy for acquisition of fugitive emission flux data,” J. Air Waste Manag. Assoc. 55(5), 658–668 (2005). [CrossRef] [PubMed]
  50. Y. He, Y. Zhang, W. Liu, R. Kan, and H. Xia, “Atmospheric ammonia monitoring near Beijing National Stadium from July to October in 2008 by open-path TDLAS system,” in F. Amzajerdian, C-Q. Gao, T.-Y. Xie, eds., International Symposium on Photoelectronic Detection and Imaging 2009: Pt. 1 – Laser Sensing and Imaging, Proc. SPIE 7382, 73821L/1–73821L/7 (2009).
  51. Y. He, Y. Zhang, L. Wang, K. You, Y. Gao, A. Zhu, and W. Yang, “An ammonia sensor with high sensitivity in farmland based on laser absorption spectroscopy technology,” in B. Culshaw, ed., Advanced Sensor Systems and Applications V, Proc. SPIE 8561, 85610X/1–8 5610X/7 (2012).
  52. R. Peeters, G. Berden, A. Apituley, G. Meijer, “Open-path trace gas detection of ammonia based on cavity-enhanced absorption spectroscopy,” Appl. Phys. B 71(2), 231–236 (2000). [CrossRef]
  53. M. C. Phillips, M. S. Taubman, B. E. Bernacki, B. D. Cannon, J. T. Schiffern, and T. L. Myers, “Design and performance of a sensor system for detection of multiple chemicals using an external cavity quantum cascade laser,” in M. Razeghi, R. Sudharsanan, and G. J. Brown, eds., Quantum Sensing and Nanophotonic Devices VII, Proc. SPIE 7608, 76080D/1–76080D/11 (2010).
  54. D. J. Miller, K. Sun, L. Tao, M. A. Khan, and M. A. Zondlo, “Open-path, quantum cascade laser-based sensor for high resolution atmospheric ammonia measurements,” Atmos. Meas. Tech. Discuss. 6, 7005–7039 (2013); http://www.atmos-meas-tech-discuss.net/6/7005/2013/ [CrossRef]
  55. L. Lundsberg-Nielsen, F. Hegelund, F. M. Nicolaisen, “Analysis of the high-resolution spectrum of ammonia (14NH3) in the near-infrared region, 6400–6900 cm–1,” J. Mol. Spectrosc. 162(1), 230–245 (1993). [CrossRef]
  56. M. E. Webber, D. S. Baer, R. K. Hanson, “Ammonia monitoring near 1.5 µm with diode-laser absorption sensors,” Appl. Opt. 40(12), 2031–2042 (2001). [CrossRef] [PubMed]
  57. C. L. Bell, M. Dhib, G. Hancock, G. A. D. Ritchie, J. H. van Helden, N. J. van Leeuwen, “Cavity enhanced absorption spectroscopy measurements of pressure-induced broadening and shift coefficients in the υ1 + υ3 combination band of ammonia,” Appl. Phys. B 94(2), 327–336 (2009). [CrossRef]
  58. B. A. Paldus, C. C. Harb, T. G. Spence, R. N. Zare, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, “Cavity ringdown spectroscopy using mid-infrared quantum-cascade lasers,” Opt. Lett. 25(9), 666–668 (2000). [CrossRef] [PubMed]
  59. Note in particular Picarro’s G2103 and G1103 near-IR WS-CRDS (Wavelength-Scanned Cavity Ring Down Spectroscopy) NH3 analyzers; see https://picarro.app.box.com/shared/ffey0e0mo8 and http://www.picarro.com/assets/docs/NH3_analyzer_datasheet.pdf , respectively.
  60. G. Burba and D. Anderson, A Brief Practical Guide to Eddy Covariance Flux Measurements (Li-COR Biosciences, 2010); http://www.licor.com/env/products/eddy_covariance/ec_book.html

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited