OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 11 — Jun. 2, 2014
  • pp: 13190–13201

Phase sensitivity of fundamental mode of hollow-core photonic bandgap fiber to internal gas pressure

Yingchun Cao, Wei Jin, Fan Yang, and Hoi Lut Ho  »View Author Affiliations


Optics Express, Vol. 22, Issue 11, pp. 13190-13201 (2014)
http://dx.doi.org/10.1364/OE.22.013190


View Full Text Article

Enhanced HTML    Acrobat PDF (2017 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The response of the commercial HC-1550-02 hollow-core photonic bandgap fiber (HC-PBF) to gas pressure applied internally to the hollow-core was experimentally investigated. The transmission spectrum of the HC-PBF was hardly affected by the pressure, while the accumulated phase of the fundamental optical mode showed a normalized pressure sensitivity of 1.044 × 10−2 rad/(Pa∙m), which is over two orders of magnitude higher than that to the external pressure. Numerical simulation showed that the observed high sensitivity to pressure is due to the pressure-induced refractive index change of air inside the hollow-core. This research could find potential applications in high sensitivity static and dynamic pressure measurement and optical phase manipulation.

© 2014 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(120.5475) Instrumentation, measurement, and metrology : Pressure measurement

ToC Category:
Fiber Optics

History
Original Manuscript: November 14, 2013
Revised Manuscript: December 23, 2013
Manuscript Accepted: January 31, 2014
Published: May 23, 2014

Citation
Yingchun Cao, Wei Jin, Fan Yang, and Hoi Lut Ho, "Phase sensitivity of fundamental mode of hollow-core photonic bandgap fiber to internal gas pressure," Opt. Express 22, 13190-13201 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-11-13190


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999). [CrossRef] [PubMed]
  2. C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003). [CrossRef] [PubMed]
  3. A. R. Bhagwat, A. L. Gaeta, “Nonlinear optics in hollow-core photonic bandgap fibers,” Opt. Express 16(7), 5035–5047 (2008). [CrossRef] [PubMed]
  4. J. C. Travers, W. K. Chang, J. Nold, N. Y. Joly, P. S. J. Russell, “Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers [Invited],” J. Opt. Soc. Am. B 28, A11–A26 (2011). [CrossRef]
  5. F. Benabid, J. C. Knight, G. Antonopoulos, P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002). [CrossRef] [PubMed]
  6. R. Thapa, K. Knabe, M. Faheem, A. Naweed, O. L. Weaver, K. L. Corwin, “Saturated absorption spectroscopy of acetylene gas inside large-core photonic bandgap fiber,” Opt. Lett. 31(16), 2489–2491 (2006). [CrossRef] [PubMed]
  7. J. M. Fini, “Microstructure fibres for optical sensing in gases and liquids,” Meas. Sci. Technol. 15(6), 1120–1128 (2004). [CrossRef]
  8. C. M. B. Cordeiro, C. J. S. de Matos, E. M. dos Santos, A. Bozolan, J. S. K. Ong, T. Facincani, G. Chesini, A. R. Vaz, C. H. B. Cruz, “Towards practical liquid and gas sensing with photonic crystal fibres: side access to the fibre microstructure and single-mode liquid-core fibre,” Meas. Sci. Technol. 18(10), 3075–3081 (2007). [CrossRef]
  9. Y. L. Hoo, S. J. Liu, H. L. Ho, W. Jin, “Fast response microstructured optical fiber methane sensor with multiple side-openings,” IEEE Photonics Technol. Lett. 22(5), 296–298 (2010). [CrossRef]
  10. H. K. Kim, M. J. F. Digonnet, G. S. Kino, “Air-core photonic-bandgap fiber-optic gyroscope,” J. Lightwave Technol. 24(8), 3169–3174 (2006). [CrossRef]
  11. J. Lægsgaard, P. J. Roberts, “Influence of air pressure on soliton formation in hollow-core photonic bandgap fibers,” J. Opt. Soc. Am. B 26(9), 1795–1800 (2009). [CrossRef]
  12. R. E. P. de Oliveira, C. J. S. de Matos, J. G. Hayashi, C. M. B. Cordeiro, “Pressure sensing based on nonconventional air-guiding transmission windows in hollow-core photonic crystal fibers,” J. Lightwave Technol. 27(11), 1605–1609 (2009). [CrossRef]
  13. M. Pang, H. F. Xuan, J. Ju, W. Jin, “Influence of strain and pressure to the effective refractive index of the fundamental mode of hollow-core photonic bandgap fibers,” Opt. Express 18(13), 14041–14055 (2010). [CrossRef] [PubMed]
  14. M. Pang, W. Jin, “Detection of acoustic pressure with hollow-core photonic bandgap fiber,” Opt. Express 17(13), 11088–11097 (2009). [CrossRef] [PubMed]
  15. F. Yang, W. Jin, H. L. Ho, F. Y. Wang, W. Liu, L. N. Ma, Y. M. Hu, “Enhancement of acoustic sensitivity of hollow-core photonic bandgap fibers,” Opt. Express 21(13), 15514–15521 (2013). [CrossRef] [PubMed]
  16. L. Xiao, W. Jin, M. S. Demokan, H. L. Ho, Y. L. Hoo, C. L. Zhao, “Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer,” Opt. Express 13(22), 9014–9022 (2005). [CrossRef] [PubMed]
  17. J. A. West, C. M. Smith, N. F. Borrelli, D. C. Allan, K. W. Koch, “Surface modes in air-core photonic band-gap fibers,” Opt. Express 12(8), 1485–1496 (2004). [CrossRef] [PubMed]
  18. K. Z. Aghaie, M. J. F. Digonnet, S. H. Fan, “Experimental assessment of the accuracy of an advanced photonic-bandgap-fiber model,” J. Lightwave Technol. 31(7), 1015–1022 (2013). [CrossRef]
  19. G. Ducournau, O. Latry, M. Kétata, “Fiber-based Mach-Zehnder interferometric structures: principles and required characteristics for efficient modulation format conversion,” Proc. SPIE 6019, 60190A (2005). [CrossRef]
  20. K. P. Birch, M. J. Downs, “An updated Edlén equation for the refractive-index of air,” Metrologia 30(3), 155–162 (1993). [CrossRef]
  21. K. P. Birch, M. J. Downs, “Correction to the updated Edlén equation for the refractive-index of air,” Metrologia 31(4), 315–316 (1994). [CrossRef]
  22. M. Ranusawud, P. Limsuwan, T. Somthong, K. Vacharanukul, “Effects of the environment on refractive index of air in long gauge block interferometer,” Precis. Eng. 37(3), 782–786 (2013). [CrossRef]
  23. V. Dangui, H. K. Kim, M. J. F. Digonnet, G. S. Kino, “Phase sensitivity to temperature of the fundamental mode in air-guiding photonic-bandgap fibers,” Opt. Express 13(18), 6669–6684 (2005). [CrossRef] [PubMed]
  24. L. Jin, B.-O. Guan, H. Wei, “Sensitivity characteristics of Fabry-Perot pressure sensors based on hollow-core microstructured fibers,” J. Lightwave Technol. 31(15), 2526–2532 (2013). [CrossRef]
  25. C. D. Butter, G. B. Hocker, “Fiber optics strain gauge,” Appl. Opt. 17(18), 2867–2869 (1978). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited