OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 11 — Jun. 2, 2014
  • pp: 13202–13212

A simple method for quality evaluation of micro-optical components based on 3D IPSF measurement

Maciej Baranski, Stephane Perrin, Nicolas Passilly, Luc Froehly, Jorge Albero, Sylwester Bargiel, and Christophe Gorecki  »View Author Affiliations

Optics Express, Vol. 22, Issue 11, pp. 13202-13212 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (5508 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper presents a simple method based on the measurement of the 3D intensity point spread function for the quality evaluation of high numerical aperture micro-optical components. The different slices of the focal volume are imaged thanks to a microscope objective and a standard camera. Depending on the optical architecture, it allows characterizing both transmissive and reflective components, for which either the imaging part or the component itself are moved along the optical axis, respectively. This method can be used to measure focal length, Strehl ratio, resolution and overall wavefront RMS and to estimate optical aberrations. The measurement setup and its implementation are detailed and its advantages are demonstrated with micro-ball lenses and micro-mirrors. This intuitive method is adapted for optimization of micro-optical components fabrication processes, especially because heavy equipments and/or data analysis are not required.

© 2014 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.4640) Instrumentation, measurement, and metrology : Optical instruments
(220.1010) Optical design and fabrication : Aberrations (global)
(130.3990) Integrated optics : Micro-optical devices

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: February 19, 2014
Revised Manuscript: April 13, 2014
Manuscript Accepted: May 12, 2014
Published: May 23, 2014

Maciej Baranski, Stephane Perrin, Nicolas Passilly, Luc Froehly, Jorge Albero, Sylwester Bargiel, and Christophe Gorecki, "A simple method for quality evaluation of micro-optical components based on 3D IPSF measurement," Opt. Express 22, 13202-13212 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Sinzinger, J. Jahns, Microoptics, 2nd ed. (Wiley-VCH, 2003). [CrossRef]
  2. H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. J. Woo, H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A: Pure Appl. Opt. 8, S407–S429 (2006). [CrossRef]
  3. R. Leach, Optical Measurement of Surface Topography (Springer, 2011). [CrossRef]
  4. P. Sandoz, G. Tribillon, “Profilometry by zero-order interference fringe identification,” J. Mod. Opt. 40, 1691–1700 (1993). [CrossRef]
  5. J. Albero, S. Bargiel, N. Passilly, P. Dannberg, M. Stumpf, U. D. Zeitner, C. Rousselot, K. Gastinger, C. Gorecki, “Micromachined array-type Mirau interferometer for parallel inspection of MEMS,” J. Micromech. Microeng. 21, 065005 (2011). [CrossRef]
  6. D. Malacara, Optical Shop Testing, 3rd ed. (John Wiley and Sons, 2007) [CrossRef]
  7. F. Charriere, J. Kuhn, T. Colomb, F. Montfort, E. Cuche, Y. Emery, K. Weible, P. Marquet, C. Depeursinge, “Characterization of microlenses by digital holographic microscopy,” Appl. Opt. 45, 829–835 (2006). [CrossRef] [PubMed]
  8. M.-S. Kim, T. Scharf, H. P. Herzig, “Small-size microlens characterization by multi-wavelength high-resolution interference microscopy,” Opt. Express 18, 14319–14329 (2010). [CrossRef] [PubMed]
  9. J. L. Beverage, R. V. Shack, M. R. Descour, “Measurement of the three-dimensional microscope point spread function using a Shack-Hartmann wavefront sensor,” J. Microsc. 205, 61–75 (2002). [CrossRef] [PubMed]
  10. P. Huang, T. Huang, Y. Sun, S. Yang, “Fabrication of large area resin microlens arrays using gas-assisted ultraviolet embossing,” Opt. Express 16, 3041–3048 (2008). [CrossRef] [PubMed]
  11. L. Jiang, T. Huang, C. Chiu, C. Chang, S. Yang, “Fabrication of plastic microlens arrays using hybrid extrusion rolling embossing with a metallic cylinder mold fabricated using dry film resist,” Opt. Express 15, 12088–12094 (2007). [CrossRef] [PubMed]
  12. A. Y. Yi, L. Li, “Design and fabrication of a microlens array by use of a slow tool servo,” Opt. Lett. 30, 1707–1709 (2005). [CrossRef] [PubMed]
  13. G. C. Firestone, A. Y. Yi, “Precision compression molding of glass microlenses and microlens arrays–an experimental study,” Appl. Opt. 44, 6115–6122 (2005). [CrossRef] [PubMed]
  14. H. Yang, C.-K. Chao, M.-K. Wei, C.-P. Lin, “High fill-factor microlens array mold insert fabrication using a thermal reflow process,” J. Micromech. Microeng. 14, 1197–1204 (2004). [CrossRef]
  15. J. Braat, S. V. Haver, A. Janssen, P. Dirksen, “Assessment of optical systems by means of point-spread functions,” Prog. Optics 51, 349–468 (2008). [CrossRef]
  16. E. Botcherby, R. Juskaitis, M. Booth, T. Wilson, “An optical technique for remote focusing in microscopy,” Opt. Commun. 281, 880–887 (2008). [CrossRef]
  17. R. W. Cole, T. Jinadasa, C. M. Brown, “Measuring and interpreting point spread functions to determine confocal microscope resolution and ensure quality control,” Nat. Protoc. 6, 1929–1941 (2011). [CrossRef] [PubMed]
  18. N. Bobroff, A. E. Rosenbluth, “Evaluation of highly corrected optics by measurement of the Strehl ratio,” Appl. Opt. 31, 1523–1536 (1992). [CrossRef] [PubMed]
  19. F. Charriere, A. Marian, T. Colomb, P. Marquet, C. Depeursinge, “Amplitude point-spread function measurement of high-NA microscope objectives by digital holographic microscopy,” Opt. Lett. 32, 2456–2458 (2007). [CrossRef] [PubMed]
  20. M. Born, E. Wolf, A. Bhatia, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge U. Press, 1999). [CrossRef]
  21. T. E. Oliphant, “Python for scientific computing,” Comput. Sci. Eng. 9, 10–20 (2007). [CrossRef]
  22. M. A. Robertson, S. Borman, R. Stevenson, “Dynamic range improvement through multiple exposures,” in Proceedings of the International Conference on Image Processing (IEEE, 1999), pp. 159–163.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited