OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 11 — Jun. 2, 2014
  • pp: 13244–13249

Sub-130 fs mode-locked Er-doped fiber laser based on topological insulator

Jaroslaw Sotor, Grzegorz Sobon, and Krzysztof M. Abramski  »View Author Affiliations

Optics Express, Vol. 22, Issue 11, pp. 13244-13249 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2103 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this work we present for the first time, to the best of our knowledge, a stretched-pulse mode-locked fiber laser based on topological insulator. As a saturable absorber (SA) a ~0.5 mm thick lump of antimony telluride (Sb2Te3) deposited on a side-polished fiber was used. Such a SA introduced 6% modulation depth with 43% of non-saturable losses, which is sufficient for supporting stretched-pulse mode-locking. The ring laser resonator based on Er-doped active fiber with managed intracavity dispersion was capable of generating ultrashort optical pulses with full width at half maximum (FWHM) of 30 nm centered at 1565 nm. The pulses with duration of 128 fs were repeated with a frequency of 22.32 MHz.

© 2014 Optical Society of America

OCIS Codes
(140.3500) Lasers and laser optics : Lasers, erbium
(140.3510) Lasers and laser optics : Lasers, fiber
(140.4050) Lasers and laser optics : Mode-locked lasers
(160.4330) Materials : Nonlinear optical materials

ToC Category:
Lasers and Laser Optics

Original Manuscript: April 16, 2014
Revised Manuscript: May 19, 2014
Manuscript Accepted: May 19, 2014
Published: May 23, 2014

Jaroslaw Sotor, Grzegorz Sobon, and Krzysztof M. Abramski, "Sub-130 fs mode-locked Er-doped fiber laser based on topological insulator," Opt. Express 22, 13244-13249 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. E. Fermann, M. L. Stock, M. J. Andrejco, Y. Silberberg, “Passive mode locking by using nonlinear polarization evolution in a polarization-maintaining erbium-doped fiber,” Opt. Lett. 18(11), 894–896 (1993). [CrossRef] [PubMed]
  2. M. Nikodem, K. M. Abramski, “169 MHz repetition frequency all-fiber passively mode-locked erbium doped fiber laser,” Opt. Commun. 283(1), 109–112 (2010). [CrossRef]
  3. G. Steinmeyer, D. H. Sutter, L. Gallmann, N. Matuschek, U. Keller, “Frontiers in Ultrashort Pulse Generation: Pushing the Limits in Linear and Nonlinear Optics,” Science 286(5444), 1507–1512 (1999). [CrossRef] [PubMed]
  4. U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003). [CrossRef] [PubMed]
  5. S. Yamashita, Y. Inoue, S. Maruyama, Y. Murakami, H. Yaguchi, M. Jablonski, S. Y. Set, “Saturable absorbers incorporating carbon nanotubes directly synthesized onto substrates and fibers and their application to mode-locked fiber lasers,” Opt. Lett. 29(14), 1581–1583 (2004). [CrossRef] [PubMed]
  6. A. Martinez, Z. Sun, “Nanotube and graphene saturable absorbers for fibre lasers,” Nat. Photonics 7(11), 842–845 (2013). [CrossRef]
  7. T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, A. C. Ferrari, “Nanotube–Polymer Composites for Ultrafast Photonics,” Adv. Mater. 21(38-39), 3874–3899 (2009). [CrossRef]
  8. Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Z. X. Shen, K. P. Loh, D. Y. Tang, “Atomic layer graphene as saturable absorber for ultrafast pulsed laser,” Adv. Funct. Mater. 19(19), 3077–3083 (2009). [CrossRef]
  9. Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010). [CrossRef] [PubMed]
  10. D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett. 97(20), 203106 (2010). [CrossRef]
  11. H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, K. P. Loh, B. Lin, S. C. Tjin, “Compact graphene modelocked wavelength-tunable erbium-doped fiber lasers: from all anomalous dispersion to all normal dispersion,” Laser Phys. Lett. 7(8), 591–596 (2010). [CrossRef]
  12. A. Martinez, K. Fuse, B. Xu, S. Yamashita, “Optical deposition of graphene and carbon nanotubes in a fiber ferrule for passive mode-locked lasing,” Opt. Express 18(22), 23054–23061 (2010). [CrossRef] [PubMed]
  13. Q. Wang, T. Chen, B. Zhang, M. Li, Y. Lu, K. P. Chen, “All-fiber passively mode-locked thulium-doped fiber ring laser using optically deposited graphene saturable absorbers,” Appl. Phys. Lett. 102(13), 131117 (2013). [CrossRef]
  14. G. Sobon, J. Sotor, I. Pasternak, A. Krajewska, W. Strupinski, K. M. Abramski, “Thulium-doped all-fiber laser mode-locked by CVD-graphene/PMMA saturable absorber,” Opt. Express 21(10), 12797–12802 (2013). [CrossRef] [PubMed]
  15. J. Sotor, G. Sobon, I. Pasternak, A. Krajewska, W. Strupinski, K. M. Abramski, “Simultaneous mode-locking at 1565 nm and 1944 nm in fiber laser based on common graphene saturable absorber,” Opt. Express 21(16), 18994–19002 (2013). [CrossRef] [PubMed]
  16. J. Sotor, G. Sobon, J. Tarka, I. Pasternak, A. Krajewska, W. Strupinski, K. M. Abramski, “Passive synchronization of erbium and thulium doped fiber mode-locked lasers enhanced by common graphene saturable absorber,” Opt. Express 22(5), 5536–5543 (2014). [CrossRef] [PubMed]
  17. I. H. Baek, H. W. Lee, S. Bae, B. H. Hong, Y. H. Ahn, D. I. Yeom, F. Rotermund, “Efficient mode-locking of sub-70-fs Ti: sapphire laser by graphene saturable absorber,” Appl. Phys. Express 5(3), 032701 (2012). [CrossRef]
  18. M. N. Cizmeciyan, J. W. Kim, S. Bae, B. H. Hong, F. Rotermund, A. Sennaroglu, “Graphene mode-locked femtosecond Cr:ZnSe laser at 2500 nm,” Opt. Lett. 38(3), 341–343 (2013). [CrossRef] [PubMed]
  19. N. Tolstik, E. Sorokin, I. T. Sorokina, “Graphene mode-locked Cr:ZnS laser with 41 fs pulse duration,” Opt. Express 22(5), 5564–5571 (2014). [CrossRef] [PubMed]
  20. M. Z. Hasan, C. Kane, “Colloquium: topological insulators,” Rev. Mod. Phys. 82(4), 3045–3067 (2010). [CrossRef]
  21. D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava, M. Z. Hasan, “A topological Dirac insulator in a quantum spin Hall phase,” Nature 452(7190), 970–974 (2008). [CrossRef] [PubMed]
  22. J. E. Moore, “The birth of topological insulators,” Nature 464(7286), 194–198 (2010). [CrossRef] [PubMed]
  23. H. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, S. C. Zhang, “Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface,” Nat. Phys. 5(6), 438–442 (2009). [CrossRef]
  24. F. Bernard, H. Zhang, S. P. Gorza, and P. Emplit, “Towards mode-locked fiber laser using topological insulators,” in Nonlinear Photonics, OSA Technical Digest (online) (Optical Society of America, 2012), paper NTh1A.5.
  25. S. Lu, C. Zhao, Y. Zou, S. Chen, Y. Chen, Y. Li, H. Zhang, S. Wen, D. Tang, “Third order nonlinear optical property of Bi₂Se₃,” Opt. Express 21(2), 2072–2082 (2013). [CrossRef] [PubMed]
  26. S. Chen, C. Zhao, Y. Li, H. Huang, S. Lu, H. Zhang, S. Wen, “Broadband optical and microwave nonlinear response in topological insulator,” Opt. Mater. Express 4(4), 587–596 (2014). [CrossRef]
  27. J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, K. Grodecki, K. M. Abramski, “Mode-locking in Er-doped fiber laser based on mechanically exfoliated Sb2Te3 saturable absorber,” Opt. Mater. Express 4(1), 1–6 (2014). [CrossRef]
  28. J. Sotor, G. Sobon, W. Macherzynski, K. M. Abramski, “Harmonically mode-locked Er-doped fiber laser based on a Sb2Te3 topological insulator saturable absorber,” Laser Phys. Lett. 11(5), 055102 (2014). [CrossRef]
  29. Y.-H. Lin, C.-Y. Yang, S.-F. Lin, W.-H. Tseng, Q. Bao, C.-I. Wu, G.-R. Lin, “Soliton compression of the erbium-doped fiber laser weakly started mode-locking by nanoscale p-type Bi2Te3 topological insulator particles,” Laser Phys. Lett. 11(5), 055107 (2014). [CrossRef]
  30. C. Zhao, Y. Zou, Y. Chen, Z. Wang, S. Lu, H. Zhang, S. Wen, D. Tang, “Wavelength-tunable picosecond soliton fiber laser with Topological Insulator: Bi2Se3 as a mode locker,” Opt. Express 20(25), 27888–27895 (2012). [CrossRef] [PubMed]
  31. C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101(21), 211106 (2012). [CrossRef]
  32. H. Liu, X.-W. Zheng, M. Liu, N. Zhao, A.-P. Luo, Z.-C. Luo, W.-C. Xu, H. Zhang, C.-J. Zhao, S.-C. Wen, “Femtosecond pulse generation from a topological insulator mode-locked fiber laser,” Opt. Express 22(6), 6868–6873 (2014). [CrossRef] [PubMed]
  33. J. Lee, J. Koo, Y. M. Jhon, J. H. Lee, “A femtosecond pulse erbium fiber laser incorporating a saturable absorber based on bulk-structured Bi2Te3 topological insulator,” Opt. Express 22(5), 6165–6173 (2014). [CrossRef] [PubMed]
  34. M. Jung, J. Lee, J. Koo, J. Park, Y.-W. Song, K. Lee, S. Lee, J. H. Lee, “A femtosecond pulse fiber laser at 1935 nm using a bulk-structured Bi2Te3 topological insulator,” Opt. Express 22(7), 7865–7874 (2014). [CrossRef] [PubMed]
  35. L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997). [CrossRef]
  36. K. Tamura, E. P. Ippen, H. A. Haus, L. E. Nelson, “77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,” Opt. Lett. 18(13), 1080 (1993). [CrossRef] [PubMed]
  37. K. Krzempek, G. Sobon, P. Kaczmarek, K. M. Abramski, “A sub-100 fs stretched-pulse 205 MHz repetition rate passively mode-locked Er-doped all-fiber laser,” Laser Phys. Lett. 10(10), 105103 (2013). [CrossRef]
  38. Q. Yuan, Q. Nie, D. Huo, “Preparation and characterization of the antimony telluride hexagonal nanoplates,” Curr. Appl. Phys. 9(1), 224–226 (2009). [CrossRef]
  39. G. C. Sosso, S. Caravati, M. Bernasconi, “Vibrational properties of crystalline Sb2Te3 from first principles,” J. Phys. Condens. Matter 21(9), 095410 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited