OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 11 — Jun. 2, 2014
  • pp: 13250–13262

Coherent Fourier scatterometry for detection of nanometer-sized particles on a planar substrate surface

S. Roy, A. C. Assafrão, S. F. Pereira, and H. P. Urbach  »View Author Affiliations

Optics Express, Vol. 22, Issue 11, pp. 13250-13262 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2568 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Inspection tools for nano-particle contamination on a planar substrate surface is a critical problem in micro-electronics. The present solutions are either expensive and slow or inexpensive and fast but have low sensitivity because of limitations due to diffraction. Most of them are also substrate specific. In this article we report how Coherent Fourier Scatterometry is used for detection of particles smaller than λ/4. Merits of the technique, especially, the procedures to improve SNR, its flexibility and its robustness on rough surfaces are discussed with simulated and experimental results.

© 2014 Optical Society of America

OCIS Codes
(070.0070) Fourier optics and signal processing : Fourier optics and signal processing
(120.4630) Instrumentation, measurement, and metrology : Optical inspection
(120.5820) Instrumentation, measurement, and metrology : Scattering measurements
(170.5810) Medical optics and biotechnology : Scanning microscopy

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: March 3, 2014
Revised Manuscript: April 19, 2014
Manuscript Accepted: April 24, 2014
Published: May 27, 2014

Virtual Issues
Vol. 9, Iss. 8 Virtual Journal for Biomedical Optics

S. Roy, A. C. Assafrão, S. F. Pereira, and H. P. Urbach, "Coherent Fourier scatterometry for detection of nanometer-sized particles on a planar substrate surface," Opt. Express 22, 13250-13262 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. O. El Gawhary, N. Kumar, S. F. Pereira, W. M. J. Coene, H. P. Urbach, “Performance analysis of coherent optical scatterometry,” Appl. Phys. B 105(4), 775–781 (2006). [CrossRef]
  2. V. F. Paz, S. Peterhnsel, K. Frenner, W. Osten, “Solving the inverse grating problem by white light interference Fourier scatterometry,” Light Sci. Appl. 1(36), 1–7 (2012).
  3. A. J. M. den Boef, A. J. Bleeker, Y. J. L. M. van Dommenlen, M. Dusa, A. G. M. Kiers, P. F. Luehrmann, H. P. M. Pellemans, M. van der Schaar, C. D. Grouwstra, M. G. G. M. van Kraaij, “Method and apparatus for angular-resolved spectroscopic lithography characterisation,” European Patent EP1628164, (2006).
  4. J. Berger, Detection of Particles on Clean Surfaces (Springer, 1989).
  5. U. Okoroanyanwu, J. Heumann, X. Zhu, C. H. Clifford, F. Jiang, P. Mangat, R. Ghaskadavi, E. Mohn, R. Moses, O. Wood, H. Rolff, T. Schedel, R. Cantrell, P. Nesladek, N. LiCausi, X. Cai, W. Taylor, J. Schefske, M. Bender, N. Schmidt, “Towards the optical inspection sensitivity optimization of EUV masks and EUVL-exposed wafers,” Proc. SPIE. 8352, 83520V (2012). [CrossRef]
  6. V. Bakshi, ed., EUV Lithography (SPIE Press, 2009), pp.360–362.
  7. N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science 317(5845), 1698–1702 (2007). [CrossRef] [PubMed]
  8. H. Oerley, “Metrology systems for quality and process control of coatings on glass and plastic films,” in Proceedings of Technical Session 4, 9th International Conference on Coatings on Glass and Plastics 2012, Breda, Netherlands.
  9. J. F. Aguilar, E. R. Méndez, “On the limitations of the confocal scanning optical microscope as a profilometer,” J. Mod. Opt. 42(9), 1785–1794 (1995). [CrossRef]
  10. H. R. Huff, R. K. Goodall, E. Williams, K. Woo, B. Y. H. Liu, T. Warner, D. Hirleman, K. Gildersleeve, W. M. Bullis, B. W. Scheer, J. Stover, “Measurement of silicon particles by laser surface scanning and angle-resolved light scattering,” J. Electrochem. Soc. 144(1), 243–250 (1997). [CrossRef]
  11. A. Okamoto, H. Kuniyasu, H. Takeshi, “Detection of 3040-nm particles on bulk-silicon and SOI wafers using deep UV laser scattering,” IEEE Trans. Semicond. Manuf. 19(4), 372–380 (2006). [CrossRef]
  12. T. A. Germer, “Multidetector hemispherical polarized optical scattering instrument,” Proc SPIE 3784, 304–313 (1999). [CrossRef]
  13. A. Chen, V. Huang, S. Chen, C. J. Tsai, K. Wu, H. Zhang, K. Sun, J. Saito, H. Chen, D. Hu, M. Li, W. Shen, U. Mahajan, “Advanced inspection methodologies for detection and classification of killer substrate defects,” Proc. SPIE 7140, 71400W (2008). [CrossRef]
  14. T. A. Germer, “Angular dependence and polarization of out-of-plane optical scattering from particulate contamination, subsurface defects, and surface microroughness,” Appl. Opt. 36, 8798–8805 (1997). [CrossRef]
  15. J. C. Stover, V. I. Ivakhnenko, Y. Eremin, “The use of light scatter signals to identify particle material”, Proc. SPIE 4449, 131–139 (2001). [CrossRef]
  16. N. Kumar, O. El Gawhary, S. Roy, V. G. Kutchoukov, S. F. Pereira, W. Coene, H. P. Urbach, “Coherent Fourier scatterometry: tool for improved sensitivity in semiconductor metrology,” Proc. SPIE 8324, 83240Q (2012); [CrossRef]
  17. A. C. Assafrão, A. J. H. Wachters, S. F. Pereira, H. P. Urbach, “Near-field self-induced hollow spot through localized heating of polycarbonate/ZnS stack layer,” Appl. Opt. 51(31), 7684–7689 (2012). [CrossRef]
  18. B. E. Roberds, S. N. Farrens, “An atomic force microscopy study on the roughness of silicon wafers correlated with direct wafer bonding,” J. Electrochem. Soc. 143(7), 2365–2371 (1996). [CrossRef]
  19. C. Teichert, J. F. MacKay, D. E. Savage, M. G. Lagally, “Comparison of surface roughness of polished silicon wafers measured by light scattering topography, soft-x-ray scattering, and atomic-force microscopy,” Appl. Phys. Lett. 66(18), 2346–2348 (1995). [CrossRef]
  20. S. Harkema, S. Mennema, M. Barink, H Rooms, J. S. Wilson, T. van Moland, D. Bollen, “Large area ITO-free flexible white OLEDs with orgacon PEDOT:PSS and printed metal shunting lines,” Proc. SPIE 7415, 74150T (2009). [CrossRef]
  21. G. Videen, “Light scattering from a sphere on or near a surface,” J. Opt. Soc. Am. A 8(3), 483–489 (1991). [CrossRef]
  22. B. R. Johnson, “Calculation of light scattering from a spherical particle on a surface by the multipole expansion method,” J. Opt. Soc. Am. A 13(2), 326–337 (1996). [CrossRef]
  23. R. Schmehl, B. M. Nebeker, E. D. Hirleman, “Discrete-dipole approximation for scattering by features on surfaces by means of a two-dimensional fast Fourier transform technique,” J. Opt. Soc. Am. A 14(11), 3026–3036 (1997). [CrossRef]
  24. X. Wei, A. J. H. Wachters, H. P. Urbach, “Finite-element model for three-dimensional optical scattering problems,” J. Opt. Soc. Am. A 24(3), 866–881 (2007). [CrossRef]
  25. P. Blake, E. W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, A. K. Geim, “Making graphene visible,” Appl. Phys. Lett. 91(6), 063124 (2007). [CrossRef]
  26. O. G. Rodríguez-Herrera, D. Lara, K. Y. Bliokh, E. A. Ostrovskaya, C. Dainty, “Optical nanoprobing via spin-orbit interaction of light,” Phys. Rev. Lett. 104(25), 253601 (2010). [CrossRef] [PubMed]
  27. T. Herffurth, S. Schrder, M. Trost, A. Duparr, A. Tnnermann, “Comprehensive nanostructure and defect analysis using a simple 3D light-scatter sensor,” Appl. Opt. 52(14), 3279–3287 (2013). [CrossRef] [PubMed]
  28. C. Amra, ”Light scattering from multilayer optics. II. Application to experiment,” J. Opt. Soc. Am. A 11, 211–226 (1994). [CrossRef]
  29. Y. A. Eremin, J. C. Stover, N. V. Orlov, “Modeling scatter from silicon wafers features based on discrete sources method,” Opt. Eng. 38, 1296–1304 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited