OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 11 — Jun. 2, 2014
  • pp: 13269–13279

A superradiant clock laser on a magic wavelength optical lattice

Thomas Maier, Sebastian Kraemer, Laurin Ostermann, and Helmut Ritsch  »View Author Affiliations

Optics Express, Vol. 22, Issue 11, pp. 13269-13279 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1902 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An ideal superradiant laser on an optical clock transition of noninteracting cold atoms is predicted to exhibit an extreme frequency stability and accuracy far below mHz-linewidth. In any concrete setup sufficiently many atoms have to be confined and pumped within a finite cavity mode volume. Using a magic wavelength lattice minimizes light shifts and allows for almost uniform coupling to the cavity mode. Nevertheless, the atoms are subject to dipole-dipole interaction and collective spontaneous decay which compromises the ultimate frequency stability. In the high density limit the Dicke superradiant linewidth enhancement will broaden the laser line and nearest neighbor couplings will induce shifts and fluctuations of the laser frequency. We estimate the magnitude and scaling of these effects by direct numerical simulations of few atom systems for different geometries and densities. For Strontium in a regularly filled magic wavelength configuration atomic interactions induce small laser frequency shifts only and collective spontaneous emission weakly broadens the laser. These interactions generally enhance the laser sensitivity to cavity length fluctuations but for optimally chosen operating conditions can lead to an improved synchronization of the atomic dipoles.

© 2014 Optical Society of America

OCIS Codes
(020.7010) Atomic and molecular physics : Laser trapping
(140.6630) Lasers and laser optics : Superradiance, superfluorescence
(270.0270) Quantum optics : Quantum optics

ToC Category:
Quantum Optics

Original Manuscript: February 18, 2014
Revised Manuscript: April 1, 2014
Manuscript Accepted: April 2, 2014
Published: May 27, 2014

Thomas Maier, Sebastian Kraemer, Laurin Ostermann, and Helmut Ritsch, "A superradiant clock laser on a magic wavelength optical lattice," Opt. Express 22, 13269-13279 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. Martin, L. Chen, J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6, 687–692 (2012). [CrossRef]
  2. D. Meiser, J. Ye, D. Carlson, M. Holland, “Prospects for a millihertz-linewidth laser,” Phys. Rev. Lett. 102, 163601 (2009). [CrossRef] [PubMed]
  3. J. Bohnet, Z. Chen, J. Weiner, D. Meiser, M. Holland, J. Thompson, “A steady-state superradiant laser with less than one intracavity photon,” Nature 484, 78–81 (2012). [CrossRef] [PubMed]
  4. J. G. Bohnet, Z. Chen, J. M. Weiner, K. C. Cox, J. K. Thompson, “Active and passive sensing of collective atomic coherence in a superradiant laser,” Phys. Rev. A 88, 013826 (2013). [CrossRef]
  5. V. Vuletic, “Atomic physics: An almost lightless laser,” Nature 484, 43–44 (2012). [CrossRef] [PubMed]
  6. M. Xu, D. Tieri, M. Holland, “Simulating Open Quantum Systems using the Simple Lie Group SU (4),” arXiv preprint arXiv:1302.6284 (2013).
  7. K. Henschel, J. Majer, J. Schmiedmayer, H. Ritsch, “Cavity QED with an ultracold ensemble on a chip: Prospects for strong magnetic coupling at finite temperatures,” Phys. Rev. A 82, 033810 (2010). [CrossRef]
  8. F. Haake, M. I. Kolobov, C. Fabre, E. Giacobino, S. Reynaud, “Superradiant laser,” Phys. Rev. Lett. 71, 995–998 (1993). [CrossRef] [PubMed]
  9. P. Horak, K. Gheri, H. Ritsch, “Quantum dynamics of a single-atom cascade laser,” Phys. Rev. A 51, 3257–3266 (1995). [CrossRef] [PubMed]
  10. M. D. Swallows, M. Bishof, Y. Lin, S. Blatt, M. J. Martin, A. M. Rey, J. Ye, “Suppression of collisional shifts in a strongly interacting lattice clock,” Science 331, 1043–1046 (2011). [CrossRef] [PubMed]
  11. M. Gross, S. Haroche, “Superradiance: An essay on the theory of collective spontaneous emission,” Phys. Rep. 93, 301–396 (1982). [CrossRef]
  12. R. Bonifacio, P. Schwendimann, F. Haake, “Quantum statistical theory of superradiance. I,” Phys. Rev. A 4, 302 (1971). [CrossRef]
  13. N. E. Rehler, J. H. Eberly, “Superradiance,” Phys. Rev. A 3, 1735–1751 (1971). [CrossRef]
  14. H. Zoubi, “Collective light emission of a finite-size atomic chain,” Europhys. Lett. 100, 24002 (2012). [CrossRef]
  15. J. MacGillivray, M. Feld, “Theory of superradiance in an extended, optically thick medium,” Phys. Rev. A 14, 1169–1189 (1976). [CrossRef]
  16. L. Ostermann, H. Zoubi, H. Ritsch, “Cascaded collective decay in regular arrays of cold trapped atoms,” Opt. Express 20, 29634–29645 (2012). [CrossRef]
  17. N. Skribanowitz, I. P. Herman, J. C. MacGillivray, M. S. Feld, “Observation of Dicke superradiance in optically pumped HF gas,” Phys. Rev. Lett. 30, 309–312 (1973). [CrossRef]
  18. S. Inouye, A. Chikkatur, D. Stamper-Kurn, J. Stenger, D. Pritchard, W. Ketterle, “Superradiant Rayleigh scattering from a Bose-Einstein condensate,” Science 285, 571–574 (1999). [CrossRef] [PubMed]
  19. M. Moore, P. Meystre, “Theory of superradiant scattering of laser light from Bose-Einstein condensates,” Phys. Rev. Lett. 83, 5202–5205 (1999). [CrossRef]
  20. M. Takamoto, F. Hong, R. Higashi, H. Katori, “An optical lattice clock,” Nature 435, 321–324 (2005). [CrossRef] [PubMed]
  21. L. Casperson, “Spectral narrowing in double-pass superradiant lasers,” Opt. Commun. 8, 85–87 (1973). [CrossRef]
  22. R. Lehmberg, “Radiation from an N-atom system. I. General formalism,” Phys. Rev. A 2, 883–888 (1970). [CrossRef]
  23. Z. Ficek, R. Tanaś, S. Kielich, “Quantum beats and superradiant effects in the spontaneous emission from two nonidentical atoms,” Physica A: Stat. Mech. Appl. 146, 452–482 (1987). [CrossRef]
  24. Z. Ficek, R. Tanaś, “Entangled states and collective nonclassical effects in two-atom systems,” Phys. Rep. 372, 369–443 (2002). [CrossRef]
  25. P. Meystre, M. Sargent, Elements of Quantum Optics (Springer-Verlag, 1990).
  26. R. H. Dicke, “Coherence in spontaneous radiation processes,” Phys. Rev. 93, 99–110 (1954). [CrossRef]
  27. G. Campbell, A. Ludlow, S. Blatt, J. Thomsen, M. Martin, M. de Miranda, T. Zelevinsky, M. Boyd, J. Ye, S. Diddams, T. Heavner, T. Parker, S. Jefferts, “The absolute frequency of the 87Sr optical clock transition,” Metrologia 45, 539–548 (2008). [CrossRef]
  28. B. Bloom, T. Nicholson, J. Williams, S. Campbell, M. Bishof, X. Zhang, W. Zhang, S. Bromley, J. Ye, “An optical lattice clock with accuracy and stability at the 10−18 level,” Nature 506, 71–75 (2014). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited