OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 11 — Jun. 2, 2014
  • pp: 13280–13287

Pulse compression and broadening by reflection from a moving front of a photonic crystal

Elena A. Ulchenko, Dirk Jalas, Alexander Yu. Petrov, Michel Castellanos Muñoz, Slawa Lang, and Manfred Eich  »View Author Affiliations


Optics Express, Vol. 22, Issue 11, pp. 13280-13287 (2014)
http://dx.doi.org/10.1364/OE.22.013280


View Full Text Article

Enhanced HTML    Acrobat PDF (1267 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Previously, the effect of pulse bandwidth compression or broadening was observed in reflection from a moving front together with the Doppler shift. In this letter, an approach is presented, which alters pulse bandwidth without change in the central frequency. It occurs when light is reflected from a moving front of an otherwise stationary photonic crystal. This means that the photonic crystal lattice as such is stationary and only its boundary to the environment is moving, thus extruding (or shortening) the photonic crystal medium. The compression (broadening) factor depends on the front velocity and is the same as for the conventional Doppler shift. Complete reflection and transformation of the pulse can be achieved even with weak refractive index contrast, what makes the approach experimentally viable.

© 2014 Optical Society of America

OCIS Codes
(060.2630) Fiber optics and optical communications : Frequency modulation
(050.5298) Diffraction and gratings : Photonic crystals
(130.7405) Integrated optics : Wavelength conversion devices

ToC Category:
Photonic Crystals

History
Original Manuscript: March 5, 2014
Revised Manuscript: April 13, 2014
Manuscript Accepted: April 26, 2014
Published: May 27, 2014

Citation
Elena A. Ulchenko, Dirk Jalas, Alexander Yu. Petrov, Michel Castellanos Muñoz, Slawa Lang, and Manfred Eich, "Pulse compression and broadening by reflection from a moving front of a photonic crystal," Opt. Express 22, 13280-13287 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-11-13280


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. E. Ives, “The Doppler effect from moving mirrors,” J. Opt. Soc. Am. 30(6), 255–257 (1940). [CrossRef]
  2. C. S. Tsai, B. A. Auld, “Wave interactions with moving boundaries,” J. Appl. Phys. 38(5), 2106–2115 (1967). [CrossRef]
  3. M. Lampe, E. Ott, J. H. Walker, “Interaction of electromagnetic waves with a moving ionization front,” Phys. Fluids 21(1), 42–54 (1978). [CrossRef]
  4. C. H. Lai, T. C. Katsouleas, W. B. Mori, D. Whittum, “Frequency upshifting by an ionization front in a magnetized plasma,” IEEE Trans. Plasma Sci. 21(1), 45–52 (1993). [CrossRef]
  5. W. B. Mori, T. Katsouleas, J. M. Dawson, C. H. Lai, “Conversion of DC fields in a capacitor array to radiation by a relativistic ionization front,” Phys. Rev. Lett. 74(4), 542–545 (1995). [CrossRef] [PubMed]
  6. C. H. Lai, R. Liou, T. C. Katsouleas, P. Muggli, R. Brogle, C. Joshi, W. B. Mori, “Demonstration of microwave generation from a static field by a relativistic ionization front in a capacitor array,” Phys. Rev. Lett. 77(23), 4764–4767 (1996). [CrossRef] [PubMed]
  7. V. I. Semenova, “Reflection of electromagnetic waves from an ionization front,” Radiophys. Quantum Electron. 10(8), 599–604 (1967). [CrossRef]
  8. M. Kando, Y. Fukuda, A. S. Pirozhkov, J. Ma, I. Daito, L.-M. Chen, T. Zh. Esirkepov, K. Ogura, T. Homma, Y. Hayashi, H. Kotaki, A. Sagisaka, M. Mori, J. K. Koga, H. Daido, S. V. Bulanov, T. Kimura, Y. Kato, T. Tajima, “Demonstration of laser-frequency upshift by electron-density modulations in a plasma wakefield,” Phys. Rev. Lett. 99(13), 135001 (2007). [CrossRef] [PubMed]
  9. D. Kiefer, M. Yeung, T. Dzelzainis, P. S. Foster, S. G. Rykovanov, C. L. S. Lewis, R. S. Marjoribanks, H. Ruhl, D. Habs, J. Schreiber, M. Zepf, B. Dromey, “Relativistic electron mirrors from nanoscale foils for coherent frequency upshift to the extreme ultraviolet,” Nat. Commun. 4, 1763 (2013). [CrossRef] [PubMed]
  10. E. J. Reed, M. Soljacić, J. D. Joannopoulos, “Reversed Doppler effect in photonic crystals,” Phys. Rev. Lett. 91(13), 133901 (2003). [CrossRef] [PubMed]
  11. E. J. Reed, M. Soljacić, J. D. Joannopoulos, “Color of shock waves in photonic crystals,” Phys. Rev. Lett. 90(20), 203904 (2003). [CrossRef] [PubMed]
  12. E. J. Reed, M. Soljacic, M. Ibanescu, J. D. Joannopoulos, “Reversed and anomalous Doppler effects in photonic crystals and other time-dependent periodic media,” J. Comput. Aided Mater. Design 12, 1–15 (2005).
  13. N. Seddon, T. Bearpark, “Observation of the inverse Doppler effect,” Science 302(5650), 1537–1540 (2003). [CrossRef] [PubMed]
  14. F. Biancalana, A. Amann, A. V. Uskov, E. P. O’Reilly, “Dynamics of light propagation in spatiotemporal dielectric structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(4), 046607 (2007). [CrossRef] [PubMed]
  15. A. B. Shvartsburg, “Optics of nonstationary media,” Phys.- Usp. 48(8), 797–823 (2005). [CrossRef]
  16. M. D. Thomson, S. M. Tzanova, H. G. Roskos, “Terahertz frequency upconversion via relativistic Doppler reflection from a photoinduced plasma front in a solid-state medium,” Phys. Rev. B 87(8), 085203 (2013). [CrossRef]
  17. X. Liu, D. McNamara, “The use of the FDTD method for electromagnetic analysis in the presence of independently time-varying media,” Int. J. Infrared Millim. Waves 28(9), 759–778 (2007). [CrossRef]
  18. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2000).
  19. J. H. Wülbern, S. Prorok, J. Hampe, A. Petrov, M. Eich, J. Luo, A. K.-Y. Jen, M. Jenett, A. Jacob, “40 GHz electro-optic modulation in hybrid silicon-organic slotted photonic crystal waveguides,” Opt. Lett. 35(16), 2753–2755 (2010). [CrossRef] [PubMed]
  20. X. Zhang, A. Hosseini, S. Chakravarty, J. Luo, A. K. Jen, R. T. Chen, “Wide optical spectrum range, subvolt, compact modulator based on an electro-optic polymer refilled silicon slot photonic crystal waveguide,” Opt. Lett. 38(22), 4931–4934 (2013). [CrossRef] [PubMed]
  21. X. Zhang, A. Hosseini, X. Lin, H. Subbaraman, R. Chen, “Polymer-based hybrid-integrated photonic devices for silicon on-chip modulation and board-level optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 19(6), 196–210 (2013). [CrossRef]
  22. X. Gan, R.-J. Shiue, Y. Gao, K. F. Mak, X. Yao, L. Li, A. Szep, D. Walker, J. Hone, T. F. Heinz, D. Englund, “High-contrast electrooptic modulation of a photonic crystal nanocavity by electrical gating of graphene,” Nano Lett. 13(2), 691–696 (2013). [CrossRef] [PubMed]
  23. H. Lira, Z. Yu, S. Fan, M. Lipson, “Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip,” Phys. Rev. Lett. 109(3), 033901 (2012). [CrossRef] [PubMed]
  24. M. Castellanos Muñoz, A. Y. Petrov, L. O’Faolain, J. Li, T. F. Krauss, M. Eich, “Optically induced indirect photonic transitions in a slow light photonic crystal waveguide,” Phys. Rev. Lett. 112(5), 053904 (2014). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited