OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 11 — Jun. 2, 2014
  • pp: 13288–13307

Manipulating coherence resonance in a quantum dot semiconductor laser via electrical pumping

Christian Otto, Benjamin Lingnau, Eckehard Schöll, and Kathy Lüdge  »View Author Affiliations


Optics Express, Vol. 22, Issue 11, pp. 13288-13307 (2014)
http://dx.doi.org/10.1364/OE.22.013288


View Full Text Article

Enhanced HTML    Acrobat PDF (3924 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Excitability and coherence resonance are studied in a semiconductor quantum dot laser under short optical self-feedback. For low pump levels, these are observed close to a homoclinic bifurcation, which is in correspondence with earlier observations in quantum well lasers. However, for high pump levels, we find excitability close to a boundary crisis of a chaotic attractor. We demonstrate that in contrast to the homoclinic bifurcation the crisis and thus the excitable regime is highly sensitive to the pump current. The excitability threshold increases with the pump current, which permits to adjust the sensitivity of the excitable unit to noise as well as to shift the optimal noise strength, at which maximum coherence is observed. The shift adds up to more than one order of magnitude, which strongly facilitates experimental realizations.

© 2014 Optical Society of America

OCIS Codes
(140.5960) Lasers and laser optics : Semiconductor lasers
(190.1450) Nonlinear optics : Bistability
(230.5590) Optical devices : Quantum-well, -wire and -dot devices

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: February 20, 2014
Revised Manuscript: April 11, 2014
Manuscript Accepted: May 6, 2014
Published: May 27, 2014

Citation
Christian Otto, Benjamin Lingnau, Eckehard Schöll, and Kathy Lüdge, "Manipulating coherence resonance in a quantum dot semiconductor laser via electrical pumping," Opt. Express 22, 13288-13307 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-11-13288


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Bimberg, M. Grundmann, N. N. Ledentsov, Quantum Dot Heterostructures (John Wiley & Sons Ltd., New York, 1999).
  2. K. Lüdge, Nonlinear Laser Dynamics-From Quantum Dots to Cryptography (Wiley-VCH, Weinheim, 2012).
  3. M. Gioannini, I. Montrosset, “Numerical analysis of the frequency chirp in quantum-dot semiconductor lasers,” IEEE J. Quantum Electron. 43, 941–949 (2007). [CrossRef]
  4. B. Lingnau, K. Lüdge, W. W. Chow, E. Schöll, “Failure of the α-factor in describing dynamical instabilities and chaos in quantum-dot lasers,” Phys. Rev. E 86, 065201(R) (2012). [CrossRef]
  5. B. Lingnau, W. W. Chow, E. Schöll, K. Lüdge, “Feedback and injection locking instabilities in quantum-dot lasers: a microscopically based bifurcation analysis,” New J. Phys. 15, 093031 (2013). [CrossRef]
  6. T. Erneux, E. A. Viktorov, P. Mandel, “Time scales and relaxation dynamics in quantum-dot lasers,” Phys. Rev. A 76, 023819 (2007). [CrossRef]
  7. K. Lüdge, E. Schöll, E. A. Viktorov, T. Erneux, “Analytic approach to modulation properties of quantum dot lasers,” J. Appl. Phys. 109, 103112 (2011). [CrossRef]
  8. J. Pausch, C. Otto, E. Tylaite, N. Majer, E. Schöll, K. Lüdge, “Optically injected quantum dot lasers - impact of nonlinear carrier lifetimes on frequency locking dynamics,” New J. Phys. 14, 053018 (2012). [CrossRef]
  9. C. Otto, K. Lüdge, E. A. Viktorov, T. Erneux, “Quantum dot laser tolerance to optical feedback,” in “Nonlinear Laser Dynamics - From Quantum Dots to Cryptography,”, K. Lüdge, ed. (WILEY-VCH, Weinheim, 2012), Chap. 6, pp. 141–162.
  10. S. Wilkinson, B. Lingnau, J. Korn, E. Schöll, K. Lüdge, “Influence of noise on the signal properties of quantum-dot semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 19, 1900106 (2013). [CrossRef]
  11. S. Perrone, R. Vilaseca, C. Masoller, “Stochastic logic gate that exploits noise and polarization bistability in an optically injected vcsel,” Opt. Express 20, 22692–22699 (2012). [CrossRef] [PubMed]
  12. V. Flunkert, O. D’Huys, J. Danckaert, I. Fischer, E. Schöll, “Bubbling in delay-coupled lasers,” Phys. Rev. E 79, 065201 (R) (2009). [CrossRef]
  13. M. C. Soriano, J. García-Ojalvo, C. R. Mirasso, I. Fischer, “Complex photonics: Dynamics and applications of delay-coupled semiconductors lasers,” Rev. Mod. Phys. 85, 421–470 (2013). [CrossRef]
  14. A. L. Hodgkin, “The local electric changes associated with repetitive action in a medullated axon,” J. Physiol. 107, 165 (1948). [PubMed]
  15. J. D. Murray, Mathematical Biology, 2nd ed. of Biomathematics Texts (Springer, Berlin Heidelberg, 1993), vol. 19.
  16. A. N. Zaikin, A. M. Zhabotinsky, “Concentration wave propagation in two-dimensional liquid-phase self-oscillating system,” Nature 225, 535–537 (1970). 10.1038/225535b0. [CrossRef] [PubMed]
  17. D. Goulding, S. P. Hegarty, O. Rasskazov, S. Melnik, M. Hartnett, G. Greene, J. G. McInerney, D. Rachinskii, G. Huyet, “Excitability in a quantum dot semiconductor laser with optical injection,” Phys. Rev. Lett. 98, 153903 (2007). [CrossRef] [PubMed]
  18. B. Kelleher, D. Goulding, S. P. Hegarty, G. Huyet, D. Y. Cong, A. Martinez, A. Lemaitre, A. Ramdane, M. Fischer, F. Gerschütz, J. Koeth, “Excitable phase slips in an injection-locked single-mode quantum-dot laser,” Opt. Lett. 34, 440–442 (2009). [CrossRef] [PubMed]
  19. B. Kelleher, C. Bonatto, G. Huyet, S. P. Hegarty, “Excitability in optically injected semiconductor lasers: Contrasting quantum-well- and quantum-dot-based devices,” Phys. Rev. E 83, 026207 (2011). [CrossRef]
  20. B. Kelleher, S. P. Hegarty, G. Huyet, “Modified relaxation oscillation parameters in optically injected semiconductor lasers,” J. Opt. Soc. Am. B 29, 2249–2254 (2012). [CrossRef]
  21. S. Wieczorek, B. Krauskopf, D. Lenstra, “Multipulse excitability in a semiconductor laser with optical injection,” Phys. Rev. Lett. 88, 063901 (2002). [CrossRef] [PubMed]
  22. S. Wieczorek, D. Lenstra, “Spontaneously excited pulses in an optically driven semiconductor laser,” Phys. Rev. E 69, 016218 (2004). [CrossRef]
  23. S. Wieczorek, B. Krauskopf, T. Simpson, D. Lenstra, “The dynamical complexity of optically injected semiconductor lasers,” Phys. Rep. 416, 1–128 (2005). [CrossRef]
  24. L. Olejniczak, K. Panajotov, H. Thienpont, M. Sciamanna, “Self-pulsations and excitability in optically injected quantum-dot lasers: Impact of the excited states and spontaneous emission noise,” Phys. Rev. A 82, 023807 (2010). [CrossRef]
  25. H. J. Wünsche, O. Brox, M. Radziunas, F. Henneberger, “Excitability of a semiconductor laser by a two-mode homoclinic bifurcation,” Phys. Rev. Lett. 88, 023901 (2001). [CrossRef]
  26. O. Ushakov, N. Korneyev, M. Radziunas, H. J. Wünsche, F. Henneberger, “Excitability of chaotic transients in a semiconductor laser,” Europhys. Lett. 79, 30004 (2007). [CrossRef]
  27. M. Giudici, C. Green, G. Giacomelli, U. Nespolo, J. R. Tredicce, “Andronov bifurcation and excitability in semiconductor lasers with optical feedback,” Phys. Rev. E 55, 6414–6418 (1997). [CrossRef]
  28. J. L. A. Dubbeldam, B. Krauskopf, D. Lenstra, “Excitability and coherence resonance in lasers with saturable absorber,” Phys. Rev. E 60, 6580 (1999). [CrossRef]
  29. J. L. A. Dubbeldam, B. Krauskopf, “Self-pulsations of lasers with saturable absorber: dynamics and bifurcations,” Opt. Commun. 159, 325–338 (1999). [CrossRef]
  30. F. Pedaci, Z. Huang, P. van Hese, S. Barland, L. Deuker, “Excitable particles in an optical torque wrench,” Nat. Phys. 7, 259–264 (2011). [CrossRef]
  31. V. Z. Tronciu, “Excitability and coherence resonance of a DFB laser with passive dispersive reflector,” Moldavian Journal of the Physical Sciences 7, 516 (2008).
  32. B. Krauskopf, K. Schneider, J. Sieber, S. Wieczorek, M. Wolfrum, “Excitability and self-pulsations near homoclinic bifurcations in semiconductor laser systems,” Opt. Commun. 215, 367 (2003). [CrossRef]
  33. B. Romeira, J. Javaloyes, C. N. Ironside, J. M. L. Figueiredo, S. Balle, O. Piro, “Excitability and optical pulse generation in semiconductor lasers driven by resonant tunneling diode photo-detectors,” Opt. Express 21, 20931–20940 (2013). [CrossRef] [PubMed]
  34. G. Hu, T. Ditzinger, C. Z. Ning, H. Haken, “Stochastic resonance without external periodic force,” Phys. Rev. Lett. 71, 807 (1993). [CrossRef]
  35. A. S. Pikovsky, J. Kurths, “Coherence resonance in a noise-driven excitable system,” Phys. Rev. Lett. 78, 775 (1997). [CrossRef]
  36. A. B. Neiman, P. I. Saparin, L. Stone, “Coherence resonance at noisy precursors of bifurcations in nonlinear dynamical systems,” Phys. Rev. E 56, 270 (1997). [CrossRef]
  37. L. Gammaitoni, P. Hänggi, P. Jung, F. Marchesoni, “Stochastic resonance,” Rev. Mod. Phys. 70, 223–287 (1998). [CrossRef]
  38. D. Ziemann, R. Aust, B. Lingnau, E. Schöll, K. Lüdge, “Optical injection enables coherence resonance in quantum-dot lasers,” Europhys. Lett. 103, 14002 (2013). [CrossRef]
  39. G. Giacomelli, M. Giudici, S. Balle, J. R. Tredicce, “Experimental evidence of coherence resonance in an optical system,” Phys. Rev. Lett. 84, 3298 (2000). [CrossRef] [PubMed]
  40. F. T. Arecchi, R. Meucci, “Stochastic and coherence resonance in lasers: homoclinic chaos and polarization bistability,” Eur. Phys. J. B 67, 93–100 (2009). [CrossRef]
  41. S. Sergeyev, K. O’Mahoney, S. Popov, A. T. Friberg, “Coherence and anticoherence resonance in high-concentration erbium-doped fiber laser,” Opt. Lett. 35, 3736 (2010). [CrossRef] [PubMed]
  42. J. Hizanidis, A. G. Balanov, A. Amann, E. Schöll, “Noise-induced front motion: signature of a global bifurcation,” Phys. Rev. Lett. 96, 244104 (2006). [CrossRef] [PubMed]
  43. O. V. Ushakov, H. J. Wünsche, F. Henneberger, I. A. Khovanov, L. Schimansky-Geier, M. A. Zaks, “Coherence resonance near a Hopf bifurcation,” Phys. Rev. Lett. 95, 123903 (2005). [CrossRef] [PubMed]
  44. A. Zakharova, T. Vadivasova, V. Anishchenko, A. Koseska, J. Kurths, “Stochastic bifurcations and coherencelike resonance in a self-sustained bistable noisy oscillator,” Phys. Rev. E 81, 011106 (2010). [CrossRef]
  45. A. Zakharova, A. Feoktistov, T. Vadivasova, E. Schöll, “Coherence resonance and stochastic synchronization in a nonlinear circuit near a subcritical Hopf bifurcation,” Eur. Phys. J. Spec. Top. 222, 2481–2495 (2013). [CrossRef]
  46. N. B. Janson, A. G. Balanov, E. Schöll, “Delayed feedback as a means of control of noise-induced motion,” Phys. Rev. Lett. 93, 010601 (2004). [CrossRef] [PubMed]
  47. A. G. Balanov, N. B. Janson, E. Schöll, “Control of noise-induced oscillations by delayed feedback,” Physica D 199, 1–12 (2004). [CrossRef]
  48. S. A. Brandstetter, M. A. Dahlem, E. Schöll, “Interplay of time-delayed feedback control and temporally correlated noise in excitable systems,” Phil. Trans. R. Soc. A 368, 391 (2010). [CrossRef]
  49. A. Vüllings, E. Schöll, B. Lindner, “Spectra of delay-coupled heterogeneous noisy nonlinear oscillators,” Eur. Phys. J. B 87, 31 (2014). [CrossRef]
  50. C. Otto, K. Lüdge, E. Schöll, “Modeling quantum dot lasers with optical feedback: sensitivity of bifurcation scenarios,” Phys. Stat. Sol. (B) 247, 829–845 (2010).
  51. C. Otto, B. Globisch, K. Lüdge, E. Schöll, T. Erneux, “Complex dynamics of semiconductor quantum dot lasers subject to delayed optical feedback,” Int. J. Bif. Chaos 22, 1250246 (2012). [CrossRef]
  52. R. Lang, K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16, 347–355 (1980). [CrossRef]
  53. R. Wetzler, A. Wacker, E. Schöll, “Non-local Auger effect in quantum dot devices,” Semicond. Sci. Technol. 19, S43 (2004). [CrossRef]
  54. T. R. Nielsen, P. Gartner, F. Jahnke, “Many-body theory of carrier capture and relaxation in semiconductor quantum-dot lasers,” Phys. Rev. B 69, 235314 (2004). [CrossRef]
  55. K. Lüdge, E. Schöll, “Quantum-dot lasers – desynchronized nonlinear dynamics of electrons and holes,” IEEE J. Quantum Electron. 45, 1396–1403 (2009). [CrossRef]
  56. N. Majer, S. Dommers-Völkel, J. Gomis-Bresco, U. Woggon, K. Lüdge, E. Schöll, “Impact of carrier-carrier scattering and carrier heating on pulse train dynamics of quantum dot semiconductor optical amplifiers,” Appl. Phys. Lett. 99, 131102 (2011). [CrossRef]
  57. B. Lingnau, K. Lüdge, W. W. Chow, E. Schöll, “Influencing modulation properties of quantum-dot semiconductor lasers by electron lifetime engineering,” Appl. Phys. Lett. 101, 131107 (2012). [CrossRef]
  58. W. W. Chow, S. W. Koch, Semiconductor-Laser Fundamentals (Springer, Berlin, 1999). [CrossRef]
  59. K. Lüdge, E. Schöll, “Nonlinear dynamics of doped semiconductor quantum dot lasers,” Eur. Phys. J. D 58, 167–174 (2010). [CrossRef]
  60. B. Globisch, C. Otto, E. Schöll, K. Lüdge, “Influence of carrier lifetimes on the dynamical behavior of quantum-dot lasers subject to optical feedback,” Phys. Rev. E 86, 046201 (2012). [CrossRef]
  61. V. Rottschäfer, B. Krauskopf, “The ECM-backbone of the Lang-Kobayashi equations: A geometric picture,” Int. J. Bif. Chaos 17, 1575–1588 (2007). [CrossRef]
  62. C. Grebogi, E. Ott, J. A. Yorke, “Crises, sudden changes in chaotic attractors, and transient chaos,” Physica D 7, 181–200 (1983). [CrossRef]
  63. Y. A. Kuznetsov, Elements of Applied Bifurcation Theory (Springer, New York, 1995). [CrossRef]
  64. T. Heil, I. Fischer, W. Elsäßer, A. Gavrielides, “Dynamics of semiconductor lasers subject to delayed optical feedback: The short cavity regime,” Phys. Rev. Lett. 87, 243901 (2001). [CrossRef] [PubMed]
  65. T. Heil, I. Fischer, W. Elsäßer, B. Krauskopf, K. Green, A. Gavrielides, “Delay dynamics of semiconductor lasers with short external cavities: Bifurcation scenarios and mechanisms,” Phys. Rev. E 67, 066214 (2003). [CrossRef]
  66. R. L. Stratonovich, Topics in the Theory of Random Noise (Gordon and Breach, New York, 1963), vol. 1.
  67. C. W. Gardiner, Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences (Springer, Berlin, 2002).
  68. N. B. Janson, A. G. Balanov, E. Schöll, “Delayed feedback as a means of control of noise-induced motion,” Phys. Rev. Lett. 93, 010601 (2004). [CrossRef] [PubMed]
  69. K. Lüdge, “Modeling quantum dot based laser devices,” in “Nonlinear Laser Dynamics - From Quantum Dots to Cryptography,” Volume [2], Chap. 1, pp. 3–34(Wiley, 2012).
  70. M. Virte, A. Karsaklian Dal Bosco, D. Wolfersberger, M. Sciamanna, “Chaos crisis and bistability of self-pulsing dynamics in a laser diode with phase-conjugate feedback,” Phys. Rev. A 84, 043836 (2011). [CrossRef]
  71. G. Huyet, D. O’Brien, S. P. Hegarty, J. G. McInerney, A. V. Uskov, D. Bimberg, C. Ribbat, V. M. Ustinov, A. E. Zhukov, S. S. Mikhrin, A. R. Kovsh, J. K. White, K. Hinzer, A. J. SpringThorpe, “Quantum dot semiconductor lasers with optical feedback,” phys. stat. sol. (b) 201, 345–352 (2004). [CrossRef]
  72. M. Radziunas, A. Glitzky, U. Bandelow, M. Wolfrum, U. Troppenz, J. Kreissl, W. Rehbein, “Improving the Modulation Bandwidth in Semiconductor Lasers by Passive Feedback,” IEEE J. Sel. Top. Quantum Electron. 13, 136–142 (2007). [CrossRef]
  73. A. Argyris, M. Hamacher, K. E. Chlouverakis, A. Bogris, D. Syvridis, “Photonic integrated device for chaos applications in communications,” Phys. Rev. Lett. 100, 194101 (2008). [CrossRef] [PubMed]
  74. B. Haegeman, K. Engelborghs, D. Roose, D. Pieroux, T. Erneux, “Stability and rupture of bifurcation bridges in semiconductor lasers subject to optical feedback,” Phys. Rev. E 66, 046216 (2002). [CrossRef]
  75. K. Green, “Stability near threshold in a semiconductor laser subject to optical feedback: A bifurcation analysis of the Lang-Kobayashi equations,” Phys. Rev. E 79, 036210 (2009). [CrossRef]
  76. E. Schöll, Nonequilibrium Phase Transitions in Semiconductors (Springer, Berlin, 1987). [CrossRef]
  77. T. Erneux, P. Glorieux, Laser Dynamics (Cambridge University Press, UK, 2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited