OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 11 — Jun. 2, 2014
  • pp: 13308–13313

On the absorption and electromagnetic field spectral shifts in plasmonic nanotriangle arrays

Sylvain Vedraine, Renjie Hou, Peter R. Norton, and François Lagugné-Labarthet  »View Author Affiliations

Optics Express, Vol. 22, Issue 11, pp. 13308-13313 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1384 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The behavior of the electromagnetic field interaction with gold nanotriangles organized in bow-tie arrays is investigated. A side-by-side comparison between the measured absorbance of the array and the modelled integrated electric field resonances confined around the gold structures is presented and discussed to explain the spectral shift between both parameters. Finite difference time domain calculations and Raman measurements of gold triangles of different sizes and periodicity are systematically performed. Numerical calculations show that the spectral maximum of the electric field varies in distinct areas over the metallic structures.

© 2014 Optical Society of America

OCIS Codes
(180.4243) Microscopy : Near-field microscopy
(250.5403) Optoelectronics : Plasmonics
(240.6695) Optics at surfaces : Surface-enhanced Raman scattering

ToC Category:

Original Manuscript: February 19, 2014
Revised Manuscript: April 28, 2014
Manuscript Accepted: May 19, 2014
Published: May 27, 2014

Sylvain Vedraine, Renjie Hou, Peter R. Norton, and François Lagugné-Labarthet, "On the absorption and electromagnetic field spectral shifts in plasmonic nanotriangle arrays," Opt. Express 22, 13308-13313 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13(19), 1501–1505 (2001). [CrossRef]
  2. P. L. Stiles, J. A. Dieringer, N. C. Shah, R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu Rev Anal Chem (Palo Alto Calif) 1(1), 601–626 (2008). [CrossRef] [PubMed]
  3. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).
  4. S. Vedraine, P. Torchio, D. Duche, F. Flory, J. J. Simon, J. Le Rouzo, L. Escoubas, “Intrinsic absorption of plasmonic structures for organic solar cells,” Sol. Energy Mater. Sol. Cells 95(1), S57–S64 (2011). [CrossRef]
  5. M. I. Stockman, D. J. Bergman, C. Anceau, S. Brasselet, J. Zyss, “Enhanced second-harmonic generation by metal surfaces with nanoscale roughness: nanoscale dephasing, depolarization, and correlations,” Phys. Rev. Lett. 92(5), 057402 (2004). [CrossRef] [PubMed]
  6. E. Le Ru and P. Etchegoin, Principles of Surface-Enhanced Raman Spectroscopy and Related Plasmonic Effects (Elsevier, 2008).
  7. A. D. McFarland, M. A. Young, J. A. Dieringer, R. P. Van Duyne, “Wavelength-scanned surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B 109(22), 11279–11285 (2005). [CrossRef] [PubMed]
  8. B. M. Ross, L. P. Lee, “Comparison of near- and far-field measures for plasmon resonance of metallic nanoparticles,” Opt. Lett. 34(7), 896–898 (2009). [CrossRef] [PubMed]
  9. J. Zuloaga, P. Nordlander, “On the energy shift between near-field and far-field peak intensities in localized plasmon systems,” Nano Lett. 11(3), 1280–1283 (2011). [CrossRef] [PubMed]
  10. B. C. Galarreta, E. Harté, N. Marquestaut, P. R. Norton, F. Lagugné-Labarthet, “Plasmonic properties of Fischer’s patterns: polarization effects,” Phys. Chem. Chem. Phys. 12(25), 6810–6816 (2010). [CrossRef] [PubMed]
  11. A. Tavlove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time (Artech House, 2005).
  12. W. M. Haynes, CRC Handbook of Chemistry and Physics (CRC Press, 2011).
  13. C. Awada, T. Popescu, L. Douillard, F. Charra, A. Perron, H. Yockell-Lelievre, A. L. Baudrion, P. M. Adam, R. Bachelot, “Selective excitation of plasmon resonances of single Au triangles by polarization-dependent light excitation,” J. Phys. Chem. C 116(27), 14591–14598 (2012). [CrossRef]
  14. S. H. Lim, W. Mar, P. Matheu, D. Derkacs, E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101(10), 104309 (2007). [CrossRef]
  15. W. Xie, C. Herrmann, K. Kömpe, M. Haase, S. Schlücker, “Synthesis of bifunctional Au/Pt/Au core/shell nanoraspberries for in situ SERS monitoring of platinum-catalyzed reactions,” J. Am. Chem. Soc. 133(48), 19302–19305 (2011). [CrossRef] [PubMed]
  16. D. Y. Wu, L. B. Zhao, X. M. Liu, R. Huang, Y. F. Huang, B. Ren, Z. Q. Tian, “Photon-driven charge transfer and photocatalysis of p-aminothiophenol in metal nanogaps: a DFT study of SERS,” Chem. Commun. (Camb.) 47(9), 2520–2522 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited