OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 11 — Jun. 2, 2014
  • pp: 13351–13365

Stimulated Brillouin scattering of pulses in optical fibers

Gregory L. Keaton, Manuel J. Leonardo, Mark W. Byer, and Derek J. Richard  »View Author Affiliations


Optics Express, Vol. 22, Issue 11, pp. 13351-13365 (2014)
http://dx.doi.org/10.1364/OE.22.013351


View Full Text Article

Enhanced HTML    Acrobat PDF (952 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We derive analytic expressions for the Brillouin thresholds of square pulses in optical fibers. The equations are valid for pulse durations in the transient Brillouin scattering regime (less than 100 nsec), as well for longer pulses, and have been confirmed experimentally. Our analysis also gives a firm theoretical prediction that the Brillouin gain width increases dramatically for intense pulses, from tens of MHz to one GHz or more.

© 2014 Optical Society of America

OCIS Codes
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(290.5900) Scattering : Scattering, stimulated Brillouin

ToC Category:
Fiber Optics

History
Original Manuscript: March 19, 2014
Revised Manuscript: May 3, 2014
Manuscript Accepted: May 5, 2014
Published: May 27, 2014

Citation
Gregory L. Keaton, Manuel J. Leonardo, Mark W. Byer, and Derek J. Richard, "Stimulated Brillouin scattering of pulses in optical fibers," Opt. Express 22, 13351-13365 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-11-13351


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. P. Agrawal, Nonlinear Fiber Optics, 5thedition (Academic,Oxford, 2013).
  2. R. W. Boyd, Nonlinear Optics, 2nd edition (Academic, San Diego, 2003).
  3. M. J. Leonardo, M. W. Byer, G. L. Keaton, D. J. Richard, F. J. Adams, K. Monro, J. L. Nightingale, S. Guzsella, L. Smoliar, “Versatile, nanosecond laser source for precision material processing,” presented at the 28th International Congress on Applications of Lasers and Electro-Optics (ICALEO), Orlando, Florida, 2–5 Nov.2009, paper #M103.
  4. N. M. Kroll, “Excitation of hypersonic vibrations by means of photoelastic coupling of high-intensity light waves to elastic waves,” J. Appl. Phys. 36, 34–43 (1965). [CrossRef]
  5. D. Pohl, W. Kaiser, “Time-resolved investigations of stimulated Brillouin scattering in transparent and absorbing media: Determination of phonon lifetimes,” Phys. Rev. B. 1, 31–43 (1970). [CrossRef]
  6. H. Li, K. Ogusu, “Dynamic behavior of stimulated Brillouin scattering in a single-mode optical fiber,” Jpn. J. Appl. Phys. 38, 6309–6315 (1999). [CrossRef]
  7. V. P. Kalosha, E. A. Ponomarev, L. Chen, X. Bao, “How to obtain high spectral resolution of SBS-based distributed sensing by using nanosecond pulses,” Opt. Express 14, 2071–2078 (2006). [CrossRef] [PubMed]
  8. M. S. Bigelow, S. G. Lukishova, R. W. Boyd, M. D. Skeldon, “Transient stimulated Brillouin scattering dynamics in polarization maintaining optical fiber,” CLEO2001, paper CTuZ3.
  9. R. G. Smith, “Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering,” Appl. Opt. 11, 2489–2494 (1972). [CrossRef] [PubMed]
  10. V. I. Kovalev, R. G. Harrison, “Suppression of stimulated Brillouin scattering in high-power single-frequency fiber amplifiers,” Opt. Lett. 31, 161–163 (2006). [CrossRef] [PubMed]
  11. Q. Yu, X. Bao, L. Chen, “Strain dependence of Brillouin frequency, intensity, and bandwidth in polarization-maintaining fibers,” Opt. Lett. 29, 1605–1607 (2004). [CrossRef] [PubMed]
  12. D. Williams, X. Bao, L. Chen, “Characterization of high nonlinearity in Brillouin amplification in optical fibers with applications in fiber sensing and photonic logic,” Photon. Res. 2, 1–9 (2014). [CrossRef]
  13. V. Lecoeuche, D. J. Webb, C. N. Pannell, D. A. Jackson, “Transient response in high-resolution Brillouin-based distributed sensing using probe pulses shorter than the acoustic relaxation time,” Opt. Lett. 25, 156–158 (2000). [CrossRef]
  14. M. Niklès, L. Thévenaz, P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997). [CrossRef]
  15. V. I. Kovalev, R. G. Harrison, “Means for easy and accurate measurement of the stimulated Brillouin scattering gain coefficient in optical fiber,” Opt. Lett. 33, 2434–2436 (2008). [CrossRef] [PubMed]
  16. M. D. Mermelstein, “SBS threshold measurements and acoustic beam propagation modeling in guiding and anti-guiding single mode optical fibers,” Opt. Express 17, 16225–16237 (2009). [CrossRef] [PubMed]
  17. V. Lanticq, S. Jiang, R. Gabet, Y. Jaouën, F. Taillade, G. Moreau, G. P. Agrawal, “Self-referenced and single-ended method to measure Brillouin gain in monomode optical fibers,” Opt. Lett. 34, 1018–1020 (2009). [CrossRef] [PubMed]
  18. V. I. Kovalev, R. G. Harrison, “Waveguide-induced inhomogeneous spectral broadening of stimulated Brillouin scattering in optical fiber,” Opt. Lett. 27, 2022–2024 (2002). [CrossRef]
  19. S. L. Sobolev, Partial Differential Equations of Mathematical Physics (Dover, New York, 1989).
  20. G. Arfken, Mathematical Methods for Physicists, 3rd edition (Academic, Orlando, 1985).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited