OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 11 — Jun. 2, 2014
  • pp: 13366–13373

Generation of mode-locked optical pulses at 1035 nm from a fiber Bragg grating stabilized semiconductor laser diode

Peh Siong Teh, Shaif-ul Alam, David P. Shepherd, and David J. Richardson  »View Author Affiliations

Optics Express, Vol. 22, Issue 11, pp. 13366-13373 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1316 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the generation of transform-limited, ~18 ps optical pulses from a fiber Bragg grating (FBG) stabilized semiconductor laser diode. Up to 7.2 pJ of pulse energy and a peak power of 400mW were achieved when operating at a repetition frequency of 832.6 MHz, a multiple of the cavity (diode + FBG) free spectral range (FSR). A small detuning in the repetition frequency resulted in broader optical pulses. We have shown experimentally the transition from a gain-switched regime of operation to mode-locked operation once the injection current modulation frequency is set to match a harmonic of the cavity FSR. The transition also results in a reduction in the timing jitter of the optical pulses.

© 2014 Optical Society of America

OCIS Codes
(140.4050) Lasers and laser optics : Mode-locked lasers
(250.5980) Optoelectronics : Semiconductor optical amplifiers

ToC Category:
Lasers and Laser Optics

Original Manuscript: March 24, 2014
Revised Manuscript: May 8, 2014
Manuscript Accepted: May 8, 2014
Published: May 27, 2014

Peh Siong Teh, Shaif-ul Alam, David P. Shepherd, and David J. Richardson, "Generation of mode-locked optical pulses at 1035 nm from a fiber Bragg grating stabilized semiconductor laser diode," Opt. Express 22, 13366-13373 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Kienle, P. S. Teh, D. Lin, S. U. Alam, J. H. V. Price, D. C. Hanna, D. J. Richardson, D. P. Shepherd, “High-power, high repetition-rate, green-pumped, picosecond LBO optical parametric oscillator,” Opt. Express 20(7), 7008–7014 (2012). [CrossRef] [PubMed]
  2. A. Ancona, S. Döring, C. Jauregui, F. Röser, J. Limpert, S. Nolte, A. Tünnermann, “Femtosecond and picosecond laser drilling of metals at high repetition rates and average powers,” Opt. Lett. 34(21), 3304–3306 (2009). [CrossRef] [PubMed]
  3. K. K. Chen, S. U. Alam, J. H. V. Price, J. R. Hayes, D. Lin, A. Malinowski, C. Codemard, D. Ghosh, M. Pal, S. K. Bhadra, D. J. Richardson, “Picosecond fiber MOPA pumped supercontinuum source with 39 W output power,” Opt. Express 18(6), 5426–5432 (2010). [CrossRef] [PubMed]
  4. J. Yoonchan, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, P. W. Turner, “Power scaling of single-frequency Ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE Selected Topics in Quantum Electronics 13(3), 546–551 (2007). [CrossRef]
  5. K. Y. Lau, “Gain switching of semiconductor injection lasers,” Appl. Phys. Lett. 52(4), 257–259 (1988). [CrossRef]
  6. K. K. Chen, J. H. V. Price, S. U. Alam, J. R. Hayes, D. Lin, A. Malinowski, D. J. Richardson, “Polarisation maintaining 100W Yb-fiber MOPA producing microJ pulses tunable in duration from 1 to 21 ps,” Opt. Express 18(14), 14385–14394 (2010). [CrossRef] [PubMed]
  7. K. A. Ahmed, H. F. Liu, N. Onodera, P. Lee, R. S. Tucker, Y. Ogawa, “Nearly transform-limited pulse (3.6 ps) generation from gain-swtiched 1-55 um distributed feeback laser by using fibre compression technique,” Electron. Lett. 29(1), 54 (1993). [CrossRef]
  8. C. de Dios, H. Lamela, “Improvements to long-duration low-power gain-switching diode laser pulses using a highly nonlinear optical loop mirror: Theory and experiment,” J. Lightw. Tech. 29, 700–707 (2011).
  9. A. Consoli, I. Esquivias, “Pulse shortening of gain switched single mode semiconductor lasers using a variable delay interferometer,” Opt. Express 20(20), 22481–22489 (2012). [CrossRef] [PubMed]
  10. D.-S. Seo, H.-F. Liu, D. Y. Kim, D. D. Sampson, “Injection power and wavelength dependence of an external-seeded gain-switched Fabry–Perot laser,” Appl. Phys. Lett. 67(11), 1503–1505 (1995). [CrossRef]
  11. P. A. Morton, R. Adar, R. C. Kistler, C. H. Henry, T. Tanbun-Ek, R. A. Logan, D. L. Coblentz, A. M. Sergent, K. W. Wecht, “Hybrid soliton pulse source using a silica waveguide external cavity and Bragg reflector,” Appl. Phys. Lett. 59(23), 2944–2946 (1991). [CrossRef]
  12. Z. Ahmed, L. Zhai, A. J. Lowery, N. Onodera, R. Tucker, “Locking bandwidth of actively mode-locked semiconductor lasers,” IEEE Journal of Quantum Electronics 29(6), 1714–1721 (1993). [CrossRef]
  13. P. A. Morton, V. Mizrahi, P. A. Andrekson, T. Tanbun-Ek, R. A. Logan, P. Lemaire, D. L. Coblentz, A. M. Sergent, K. W. Wecht, P. F. Sciortino., “Mode-locked hybrid soliton pulse source with extremely wide operating frequency range,” IEEE Photonics Technology Letters 5(1), 28–31 (1993). [CrossRef]
  14. R. Paoletti, D. Bertone, R. Fang, G. Magnetti, M. Meliga, G. Meneghini, G. Morello, G. Rossi, L. Tallone, M. Scofet, “Repetition rate, using a mode-locked hybrid distributed Bragg reflector (ML-HDBR) laser source,” IEEE Photonics Technology Letters 12(3), 245–247 (2000). [CrossRef]
  15. D. Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B 39(4), 201–217 (1986). [CrossRef]
  16. K. T. Vu, A. Malinowski, M. A. F. Roelens, M. Ibsen, P. Petropoulos, D. J. Richardson, “Full characterization of low-power picosecond pulses from a gain-switched diode laser using electrooptic modulation-based linear FROG,” IEEE Photonics Technology Letters 20(7), 505–507 (2008). [CrossRef]
  17. A. J. Lowery, N. Onodera, R. Tucker, “Stability and spectral behavior of grating-controlled actively mode-locked lasers,” IEEE Journal of Quantum Electronics 27(11), 2422–2430 (1991). [CrossRef]
  18. N. Dogru, “Effect of grating parameters on mode-locked external cavity lasers,” IEEE Journal, Selected Topics in Quantum Electronics 15(3), 644–652 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited