OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 11 — Jun. 2, 2014
  • pp: 13403–13417

Tunable ultrathin mantle cloak via varactor-diode-loaded metasurface

Shuo Liu, He-Xiu Xu, Hao Chi Zhang, and Tie Jun Cui  »View Author Affiliations


Optics Express, Vol. 22, Issue 11, pp. 13403-13417 (2014)
http://dx.doi.org/10.1364/OE.22.013403


View Full Text Article

Enhanced HTML    Acrobat PDF (6706 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a tunable strategy for the ultrathin mantle cloak via metasurface. The tunable cloak is implemented by loading varactor diodes between two neighboring horizontal metallic strips which constitute the metasurface. We demonstrate that the varactor diodes enable the capacitive reactance of the metasurface to be tunable from −157 Ω to −3 Ω when the DC bias voltage is properly changed. The active metasurface is then explored to cloak conformally a conducting cylinder. Both numerical and experiment results show that the cloaking frequency can be continuously controlled from 2.3 GHz to 3.7 GHz by appropriately adjusting the bias voltage. The flexible tunability and good cloaking performance are further examined by the measured field distributions. The advanced features of tunability, low profile, and conformal ability of the ultrathin cloak pave the way for practical applications of cloaking devices.

© 2014 Optical Society of America

OCIS Codes
(260.2110) Physical optics : Electromagnetic optics
(160.3918) Materials : Metamaterials
(230.3205) Optical devices : Invisibility cloaks

ToC Category:
Metamaterials

History
Original Manuscript: March 28, 2014
Revised Manuscript: May 3, 2014
Manuscript Accepted: May 17, 2014
Published: May 27, 2014

Citation
Shuo Liu, He-Xiu Xu, Hao Chi Zhang, and Tie Jun Cui, "Tunable ultrathin mantle cloak via varactor-diode-loaded metasurface," Opt. Express 22, 13403-13417 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-11-13403


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Alù, N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E 72(1), 016623 (2005). [CrossRef] [PubMed]
  2. J. B. Pendry, D. Schurig, D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006). [CrossRef] [PubMed]
  3. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006). [CrossRef] [PubMed]
  4. U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006). [CrossRef] [PubMed]
  5. R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009). [CrossRef] [PubMed]
  6. A. Alù, N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett. 100(11), 113901 (2008). [CrossRef] [PubMed]
  7. H. F. Ma, T. J. Cui, “Three-dimensional broadband ground-plane cloak made of metamaterials,” Nat. Commun. 1, 21 (2010).
  8. W. X. Jiang, H. F. Ma, Q. Cheng, T. J. Cui, “Illusion media: Generating virtual objects using realizable metamaterials,” Appl. Phys. Lett. 96(12), 121910 (2010). [CrossRef]
  9. S. L. He, Y. X. Cui, Y. Q. Ye, P. Zhang, Y. Jin, “Optical nano-antennas and metamaterials,” Mater. Today 12(12), 16–24 (2009). [CrossRef]
  10. B. Edwards, A. Alù, M. G. Silveirinha, N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103(15), 153901 (2009). [CrossRef] [PubMed]
  11. S. Tretyakov, P. Alitalo, O. Luukkonen, C. Simovski, “Broadband electromagnetic cloaking of long cylindrical objects,” Phys. Rev. Lett. 103(10), 103905 (2009). [CrossRef] [PubMed]
  12. W. X. Jiang, H. F. Ma, Q. A. Cheng, T. J. Cui, “Virtual conversion from metal object to dielectric object using metamaterials,” Opt. Express 18(11), 11276–11281 (2010). [CrossRef] [PubMed]
  13. Y. Luo, J. Zhang, H. Chen, L. Ran, B.-I. Wu, J. A. Kong, “A rigorous analysis of plane-transformed invisibility cloaks,” IEEE Trans. Antennas Propag. 57(12), 3926–3933 (2009). [CrossRef]
  14. T. J. Cui, D. R. Smith, and R. Liu, Metamaterials—Theory, Design, and Applications (Springer, 2009).
  15. F. Yang, Z. L. Mei, T. Y. Jin, T. J. Cui, “Dc electric invisibility cloak,” Phys. Rev. Lett. 109(5), 053902 (2012). [CrossRef] [PubMed]
  16. P. Y. Chen, J. Soric, A. Alù, “Invisibility and cloaking based on scattering cancellation,” Adv. Mater. 24(44), OP281–OP304 (2012). [PubMed]
  17. W. X. Jiang, T. J. Cui, X. M. Yang, Q. Cheng, R. Liu, D. R. Smith, “Invisibility cloak without singularity,” Appl. Phys. Lett. 93(19), 194102 (2008). [CrossRef]
  18. S. Narayana, Y. Sato, “DC Magnetic Cloak,” Adv. Mater. 24(1), 71–74 (2012). [CrossRef] [PubMed]
  19. X. Wang, E. Semouchkina, “A route for efficient non-resonance cloaking by using multilayer dielectric coating,” Appl. Phys. Lett. 102(11), 113506 (2013). [CrossRef]
  20. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008). [CrossRef] [PubMed]
  21. J. Fischer, T. Ergin, M. Wegener, “Three-dimensional polarization-independent visible-frequency carpet invisibility cloak,” Opt. Lett. 36(11), 2059–2061 (2011). [CrossRef] [PubMed]
  22. J. Valentine, J. Li, T. Zentgraf, G. Bartal, X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009). [CrossRef] [PubMed]
  23. X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011). [CrossRef] [PubMed]
  24. B. Zhang, Y. Luo, X. Liu, G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106(3), 033901 (2011). [CrossRef] [PubMed]
  25. G. W. Milton, N.-A. P. Nicorovici, “On the cloaking effects associated with anomalous localized resonance,” Proc. R. Soc. A Math. Phys. Eng. Sci. 462(2074), 3027–3059 (2006).
  26. T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010). [CrossRef] [PubMed]
  27. D. C. Liang, J. Q. Gu, J. G. Han, Y. M. Yang, S. Zhang, W. L. Zhang, “Robust large dimension terahertz cloaking,” Adv. Mater. 24(7), 916–921 (2012). [CrossRef] [PubMed]
  28. W. X. Jiang, T. J. Cui, “Radar illusion via metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(2), 026601 (2011). [CrossRef] [PubMed]
  29. H. F. Ma, W. X. Jiang, X. M. Yang, X. Y. Zhou, T. J. Cui, “Compact-sized and broadband carpet cloak and free-space cloak,” Opt. Express 17(22), 19947–19959 (2009). [CrossRef] [PubMed]
  30. A. Alù, “Mantle cloak: Invisibility induced by a surface,” Phys. Rev. B 80(24), 245115 (2009). [CrossRef]
  31. P. Y. Chen, A. Alù, “Mantle cloaking using thin patterned metasurfaces,” Phys. Rev. B 84(20), 205110 (2011). [CrossRef]
  32. Y. R. Padooru, A. B. Yakovlev, P. Y. Chen, A. Alù, “Analytical modeling of conformal mantle cloaks for cylindrical objects using sub-wavelength printed and slotted arrays,” J. Appl. Phys. 112(3), 034907 (2012). [CrossRef]
  33. D. Rainwater, A. Kerkhoff, K. Melin, J. Soric, G. Moreno, A. Alù, “Experimental verification of three-dimensional plasmonic cloaking in free-space,” New J. Phys. 14(1), 013054 (2012). [CrossRef]
  34. J. Wang, S. Qu, Z. Xu, H. Ma, J. Zhang, Y. Li, X. Wang, “Super-thin cloaks based on microwave networks,” IEEE Trans. Antenn. Propag. 61(2), 748–754 (2013). [CrossRef]
  35. A. Alù, N. Engheta, “Cloaking a sensor,” Phys. Rev. Lett. 102(23), 233901 (2009). [CrossRef] [PubMed]
  36. R. Fleury, J. C. Soric, A. Alù, “Physical bounds on absorption and scattering for cloaked sensors,” Phys. Rev. B 89(4), 045122 (2014). [CrossRef]
  37. C. A. Balanis, Advanced Engineering Electromagnetics[M] (Wiley, 1989), Chap. 8.
  38. C. Pfeiffer, A. Grbic, “Metamaterial huygens’ surfaces: Tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett. 110(19), 197401 (2013). [CrossRef] [PubMed]
  39. J. C. Soric, P. Y. Chen, A. Kerkhoff, D. Rainwater, K. Melin, A. Alù, “Demonstration of an ultralow profile cloak for scattering suppression of a finite-length rod in free space,” New J. Phys. 15(3), 033037 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited