OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 11 — Jun. 2, 2014
  • pp: 13418–13426

Super-transmission from a finite subwavelength arrangement of slits in a metal film

Shuwen Chen, Shilong Jin, and Reuven Gordon  »View Author Affiliations


Optics Express, Vol. 22, Issue 11, pp. 13418-13426 (2014)
http://dx.doi.org/10.1364/OE.22.013418


View Full Text Article

Enhanced HTML    Acrobat PDF (1395 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A theory is presented for the transmission of transverse magnetic waves through a finite number of subwavelength slits in metal film. While a single slit achieves the single channel limit on resonance, multiple slits show super-transmission exceeding the single channel limit. The phenomenon of super-transmission is revealed as a result of cross-coupling of modes and confirmed by simulations. The influence of finite permittivity in the IR and microwave regime is included by perturbative corrections to the theory. The theory agrees quantitatively with past experiments and finite-difference time-domain simulations. By considering two or more modes in the slit region, our theory provides an approach to the analysis of cross-coupling among slits, which allows for super-transmission and features of a Fano resonance.

© 2014 Optical Society of America

OCIS Codes
(230.4555) Optical devices : Coupled resonators
(250.5403) Optoelectronics : Plasmonics
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Plasmonics

History
Original Manuscript: March 27, 2014
Manuscript Accepted: May 19, 2014
Published: May 27, 2014

Citation
Shuwen Chen, Shilong Jin, and Reuven Gordon, "Super-transmission from a finite subwavelength arrangement of slits in a metal film," Opt. Express 22, 13418-13426 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-11-13418


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998). [CrossRef]
  2. F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010). [CrossRef]
  3. Y. Xie, A. R. Zakharian, J. V. Moloney, M. Mansuripur, “Transmission of light through slit apertures in metallic films,” Opt. Express 12(25), 6106–6121 (2004). [CrossRef] [PubMed]
  4. R. Gordon, A. G. Brolo, D. Sinton, K. L. Kavanagh, “Resonant optical transmission through hole-arrays in metal films: Physics and applications,” Laser Photonics Rev. 4(2), 311–335 (2010). [CrossRef]
  5. S.-H. Chang, S. K. Gray, G. C. Schatz, “Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films,” Opt. Express 13(8), 3150–3165 (2005). [CrossRef] [PubMed]
  6. F. van Beijnum, C. Rétif, C. B. Smiet, H. T. Liu, P. Lalanne, M. P. van Exter, “Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission,” Nature 492(7429), 411–414 (2012). [CrossRef] [PubMed]
  7. J. A. Porto, F. J. Garcia-Vidal, J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999). [CrossRef]
  8. Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86(24), 5601–5603 (2001). [CrossRef] [PubMed]
  9. R. Gordon, “Angle-dependent optical transmission through a narrow slit in a thick metal film,” Phys. Rev. B 75(19), 193401 (2007). [CrossRef]
  10. S. A. Maier, “Plasmonic field enhancement and SERS in the effective mode volume picture,” Opt. Express 14(5), 1957–1964 (2006). [CrossRef] [PubMed]
  11. R. Gordon, “Near-field interference in a subwavelength double slit in a perfect conductor,” J. Opt. Soc. Amer. A 8(6), L1–L3 (2006). [CrossRef]
  12. H. F. Shi, X. G. Luo, C. L. Du, “Young’s interference of double metallic nanoslit with different widths,” Opt. Express 15(18), 11321–11327 (2007). [CrossRef] [PubMed]
  13. P. Lalanne, J. P. Hugonin, J. C. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett. 95(26), 263902 (2005). [CrossRef] [PubMed]
  14. L. Verslegers, Z. Yu, Z. Ruan, P. B. Catrysse, S. Fan, “From electromagnetically induced transparency to superscattering with a single structure: a coupled-mode theory for doubly resonant structures,” Phys. Rev. Lett. 108(8), 083902 (2012). [CrossRef] [PubMed]
  15. G. D’Aguanno, D. de Ceglia, N. Mattiucci, M. J. Bloemer, “All-optical switching at the Fano resonances in subwavelength gratings with very narrow slits,” Opt. Lett. 36(11), 1984–1986 (2011). [CrossRef] [PubMed]
  16. K. L. Lee, S. H. Wu, P. K. Wei, “Intensity sensitivity of gold nanostructures and its application for high-throughput biosensing,” Opt. Express 17(25), 23104–23113 (2009). [CrossRef] [PubMed]
  17. H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, S.-H. Oh, “Vertically oriented sub-10-nm plasmonic nanogap arrays,” Nano Lett. 10(6), 2231–2236 (2010). [CrossRef] [PubMed]
  18. Y. M. Bahk, J. W. Choi, J. Kyoung, H. R. Park, K. J. Ahn, D. S. Kim, “Selective enhanced resonances of two asymmetric terahertz nano resonators,” Opt. Express 20(23), 25644–25653 (2012). [CrossRef] [PubMed]
  19. X. S. Chen, H. R. Park, M. Pelton, X. J. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D. S. Kim, S. H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat. Commun. 4, 2361 (2013). [CrossRef] [PubMed]
  20. F. Yang, J. R. Sambles, “Determination of the microwave permittivities of nematic liquid crystals using a single-metallic slit technique,” Appl. Phys. Lett. 81(11), 2047–2049 (2002). [CrossRef]
  21. J. R. Suckling, A. P. Hibbins, M. J. Lockyear, T. W. Preist, J. R. Sambles, C. R. Lawrence, “Finite conductance governs the resonance transmission of thin metal slits at microwave frequencies,” Phys. Rev. Lett. 92(14), 147401 (2004). [CrossRef] [PubMed]
  22. Z. Ruan, S. Fan, “Superscattering of light from subwavelength nanostructures,” Phys. Rev. Lett. 105(1), 013901 (2010). [CrossRef] [PubMed]
  23. D. C. Skigin, R. A. Depine, “Transmission resonances of metallic compound gratings with subwavelength slits,” Phys. Rev. Lett. 95(21), 217402 (2005). [CrossRef] [PubMed]
  24. A. P. Hibbins, I. R. Hooper, M. J. Lockyear, J. R. Sambles, “Microwave transmission of a compound metal grating,” Phys. Rev. Lett. 96(25), 257402 (2006). [CrossRef] [PubMed]
  25. D. Xiang, L.-L. Wang, X.-F. Li, L. Wang, X. Zhai, Z.-H. Liu, W.-W. Zhao, “Transmission resonances of compound metallic gratings with two subwavelength slits in each period,” Opt. Express 19(3), 2187–2192 (2011). [CrossRef] [PubMed]
  26. R. Gordon, “Light in a subwavelength slit in a metal: propagation and reflection,” Phys. Rev. B 73(15), 153405 (2006). [CrossRef]
  27. R. Gordon, “Vectorial method for calculating the Fresnel reflection of surface plasmon polaritons,” Phys. Rev. B 74(15), 153417 (2006). [CrossRef]
  28. R. Gordon, A. G. Brolo, “Increased cut-off wavelength for a subwavelength hole in a real metal,” Opt. Express 13(6), 1933–1938 (2005). [CrossRef] [PubMed]
  29. E. Palik, Handbook of Optical Constants of Solids (Academic Press, 1997).
  30. A. E. Miroshnichenko, S. Flach, Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited