OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 11 — Jun. 2, 2014
  • pp: 13448–13453

Design, production and reverse engineering of ultra-steep hot mirrors

Jinlong Zhang, Alexander V. Tikhonravov, Yongli Liu, Michael K. Trubetskov, Artur Gorokh, and Zhanshan Wang  »View Author Affiliations

Optics Express, Vol. 22, Issue 11, pp. 13448-13453 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1460 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present the whole design-production chain of an ultra-steep hot mirror produced using the indirect monochromatic monitoring technique. The hot mirror without thin layers is designed utilizing the stochastic optimization procedure that takes in account upper and lower constraints for layer optical thickness. We produced the hot mirror with the ion-assisted electron beam deposition technique using indirect monochromatic monitoring strategy, performed reverse engineering of the deposited coatings, and illustrated that the random variation of the tooling factors in low-index layers is the main factor causing production errors. We modified the monitoring strategy with low-index layers monitored by quartz crystal monitor, and demonstrated the excellent correspondence to the theoretical spectral performance.

© 2014 Optical Society of America

OCIS Codes
(310.1860) Thin films : Deposition and fabrication
(310.6860) Thin films : Thin films, optical properties
(310.4165) Thin films : Multilayer design

ToC Category:
Thin Films

Original Manuscript: April 14, 2014
Manuscript Accepted: May 15, 2014
Published: May 27, 2014

Jinlong Zhang, Alexander V. Tikhonravov, Yongli Liu, Michael K. Trubetskov, Artur Gorokh, and Zhanshan Wang, "Design, production and reverse engineering of ultra-steep hot mirrors," Opt. Express 22, 13448-13453 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. A. Dobrowolski, “Optical properties of films and coatings,” in Handbook of Optics, M. Bass, ed. (McGraw-Hill, 2010), IV, pp. 7.15–7.53.
  2. H. A. Macleod, Thin-Film Optical Filters, 4th ed. (CRC Press, 2010).
  3. A. Thelen, “Design of a hot mirror: contest results,” Appl. Opt. 35(25), 4966–4977 (1996). [CrossRef] [PubMed]
  4. A. V. Tikhonravov, M. K. Trubetskov, G. W. DeBell, “Application of the needle optimization technique to the design of optical coatings,” Appl. Opt. 35, 5493–5508 (2007). [CrossRef] [PubMed]
  5. A. V. Tikhonravov, M. K. Trubetskov, “Modern design tools and a new paradigm in optical coating design,” Appl. Opt. 51(30), 7319–7332 (2012). [CrossRef] [PubMed]
  6. A. V. Tikhonravov, M. K. Trubetskov, I. Kozlov, S. Alekseev, P. Konotopov and V. Zhupanov, “Correlated choice of design and monitoring strategy,” in Optical Interference Coatings, OSA Technical Digest Series (Optical Society of America, 2013), paper WB3.
  7. S. Wilbrandt, O. Stenzel, N. Kaiser, “All-oxide broadband antireflection coatings by plasma ion assisted deposition: design, simulation, manufacturing and re-optimization,” Opt. Express 18(19), 19732–19742 (2010). [CrossRef] [PubMed]
  8. T. V. Amotchkina, M. K. Trubetskov, V. Pervak, A. V. Tikhonravov, “Design, production, and reverse engineering of two-octave antireflection coatings,” Appl. Opt. 50(35), 6468–6475 (2011). [CrossRef] [PubMed]
  9. T. V. Amotchkina, S. Schlichting, H. Ehlers, M. K. Trubetskov, A. V. Tikhonravov, D. Ristau, “Computational manufacturing as a key element in the design-production chain for modern multilayer coatings,” Appl. Opt. 51, 7604–7615 (2011). [CrossRef] [PubMed]
  10. C. J. van der Laan, “Optical monitoring of nonquarterwave stacks,” Appl. Opt. 25(5), 753–760 (1986). [CrossRef] [PubMed]
  11. C. C. Lee, K. Wu, C. C. Kuo, S. H. Chen, “Improvement of the optical coating process by cutting layers with sensitive monitoring wavelengths,” Opt. Express 13(13), 4854–4861 (2005). [CrossRef] [PubMed]
  12. B. Chun, C. K. Hwangbo, J. S. Kim, “Optical monitoring of nonquarterwave layers of dielectric multilayer filters using optical admittance,” Opt. Express 14(6), 2473–2480 (2006). [CrossRef] [PubMed]
  13. T. V. Amotchkina, M. K. Trubetskov, V. Pervak, B. Romanov, A. V. Tikhonravov, “On the reliability of reverse engineering results,” Appl. Opt. 51(22), 5543–5551 (2012). [CrossRef] [PubMed]
  14. A. V. Tikhonravov, M. K. Trubetskov, OptiLayer Thin Film Software, http://www.optilayer.com .
  15. J. L. Zhang, Y. J. Xie, X. B. Cheng, H. F. Jiao, Z. S. Wang, “Thin-film thickness-modulated designs for optical minus filter,” Appl. Opt. 52(23), 5788–5793 (2013). [CrossRef] [PubMed]
  16. J. L. Zhang, A. V. Tikhonravov, M. K. Trubetskov, Y. L. Liu, X. B. Cheng, Z. S. Wang, “Design and fabrication of ultra-steep notch filters,” Opt. Express 21(18), 21523–21529 (2013). [CrossRef] [PubMed]
  17. T. V. Amotchkina, M. K. Trubetskov, V. Pervak, S. Schlichting, H. Ehlers, D. Ristau, A. V. Tikhonravov, “Comparison of algorithms used for optical characterization of multilayer optical coatings,” Appl. Opt. 50(20), 3389–3395 (2011). [CrossRef] [PubMed]
  18. A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, G. DeBell, V. Pervak, A. K. Sytchkova, M. L. Grilli, D. Ristau, “Optical parameters of oxide films typically used in optical coating production,” Appl. Opt. 50(9), C75–C85 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited