OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 11 — Jun. 2, 2014
  • pp: 13547–13554

Low-scattering surface plasmon refraction with isotropic materials

Evgeni A. Bezus, Leonid L. Doskolovich, and Nikolay L. Kazanskiy  »View Author Affiliations


Optics Express, Vol. 22, Issue 11, pp. 13547-13554 (2014)
http://dx.doi.org/10.1364/OE.22.013547


View Full Text Article

Enhanced HTML    Acrobat PDF (1621 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We show theoretically and numerically that a planar structure consisting of two isotropic dielectric layers can be used to minimize parasitic scattering of surface plasmon polaritons for arbitrary incidence angle. The average scattering losses are reduced by an order-of-magnitude down to 1–3%. The surface plasmon refraction with the scattering suppression can be accurately described by an analytical model based on the Fresnel equations. The proposed approach can be used for the design of plasmonic lenses, reflectors, plasmonic crystals and plasmonic laser cavities.

© 2014 Optical Society of America

OCIS Codes
(220.3630) Optical design and fabrication : Lenses
(240.6680) Optics at surfaces : Surface plasmons
(260.2110) Physical optics : Electromagnetic optics

ToC Category:
Plasmonics

History
Original Manuscript: March 19, 2014
Revised Manuscript: May 8, 2014
Manuscript Accepted: May 19, 2014
Published: May 28, 2014

Citation
Evgeni A. Bezus, Leonid L. Doskolovich, and Nikolay L. Kazanskiy, "Low-scattering surface plasmon refraction with isotropic materials," Opt. Express 22, 13547-13554 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-11-13547


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R.-M. Ma, R. F. Oulton, V. J. Sorger, X. Zhang, “Plasmon lasers: coherent light source at molecular scales,” Laser Photonics Rev. 7(1), 1–21 (2013). [CrossRef]
  2. Z. Xie, W. Yu, T. Wang, H. Zhang, Y. Fu, H. Liu, F. Li, Z. Lu, Q. Sun, “Plasmonic nanolithography: a review,” Plasmonics 6(3), 565–580 (2011). [CrossRef]
  3. Z. Han, S. I. Bozhevolnyi, “Radiation guiding with surface plasmon polaritons,” Rep. Prog. Phys. 76(1), 016402 (2013). [CrossRef] [PubMed]
  4. H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010). [CrossRef] [PubMed]
  5. R. F. Oulton, D. F. P. Pile, Y. Liu, X. Zhang, “Scattering of surface plasmon polaritons at abrupt surface interfaces: Implications for nanoscale cavities,” Phys. Rev. B 76(3), 035408 (2007). [CrossRef]
  6. J. Elser, V. A. Podolskiy, “Scattering-free plasmonic optics with anisotropic metamaterials,” Phys. Rev. Lett. 100(6), 066402 (2008). [CrossRef] [PubMed]
  7. M. Zhong-Tuan, W. Pei, C. Yong, T. Hong-Gao, M. Hai, “Pure Reflection and Refraction of a Surface Polariton by a Matched Waveguide Structure,” Chin. Phys. Lett. 23(9), 2545–2548 (2006). [CrossRef]
  8. S. Thongrattanasiri, J. Elser, V. A. Podolskiy, “Quasi-planar optics: computing light propagation and scattering in planar waveguide arrays,” J. Opt. Soc. Am. B 26(12), B102–B110 (2009). [CrossRef]
  9. A. V. Novitsky, “Conversion from surface wave to surface wave on reflection,” J. Opt. 12(11), 115705 (2010). [CrossRef]
  10. E. A. Bezus, L. L. Doskolovich, N. L. Kazanskiy, “Scattering suppression in plasmonic optics using a simple two-layer dielectric structure,” Appl. Phys. Lett. 98(22), 221108 (2011). [CrossRef]
  11. E. A. Bezus, L. L. Doskolovich, N. L. Kazanskiy, V. A. Soifer, “Scattering in elements of plasmon optics suppressed by two-layer dielectric structures,” Tech. Phys. Lett. 37(12), 1091–1095 (2011). [CrossRef]
  12. A. Salandrino, D. N. Christodoulides, “Airy plasmon: a nondiffracting surface wave,” Opt. Lett. 35(12), 2082–2084 (2010). [CrossRef] [PubMed]
  13. C. E. Garcia-Ortiz, V. Coello, Z. Han, S. I. Bozhevolnyi, “Generation of diffraction-free plasmonic beams with one-dimensional Bessel profiles,” Opt. Lett. 38(6), 905–907 (2013). [CrossRef] [PubMed]
  14. I. Avrutsky, R. Soref, W. Buchwald, “Sub-wavelength plasmonic modes in a conductor-gap-dielectric system with a nanoscale gap,” Opt. Express 18(1), 348–363 (2010). [CrossRef] [PubMed]
  15. D. G. Sannikov, D. I. Sementsov, “The surface mode of a dielectric waveguide with metal substrate,” Tech. Phys. Lett. 29(5), 353–356 (2003). [CrossRef]
  16. P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]
  17. M. N. Polyanskiy, “Refractive index database,” http://refractiveindex.info .
  18. R. Zia, A. Chandran, M. L. Brongersma, “Dielectric waveguide model for guided surface polaritons,” Opt. Lett. 30(12), 1473–1475 (2005). [CrossRef] [PubMed]
  19. M. G. Moharam, E. B. Grann, D. A. Pommet, T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12(5), 1068–1076 (1995). [CrossRef]
  20. L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13(9), 1870–1876 (1996). [CrossRef]
  21. E. Silberstein, P. Lalanne, J.-P. Hugonin, Q. Cao, “Use of grating theories in integrated optics,” J. Opt. Soc. Am. A 18(11), 2865–2875 (2001). [CrossRef] [PubMed]
  22. E. A. Bezus, L. L. Doskolovich, N. L. Kazanskiy, V. A. Soifer, S. I. Kharitonov, “Design of diffractive lenses for focusing surface plasmons,” J. Opt. 12(1), 015001 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited