OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 11 — Jun. 2, 2014
  • pp: 13555–13564

Waveguide-integrated single-crystalline GaP resonators on diamond

Nicole Thomas, Russell J. Barbour, Yuncheng Song, Minjoo Larry Lee, and Kai-Mei C. Fu  »View Author Affiliations


Optics Express, Vol. 22, Issue 11, pp. 13555-13564 (2014)
http://dx.doi.org/10.1364/OE.22.013555


View Full Text Article

Enhanced HTML    Acrobat PDF (1144 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Large-scale entanglement of nitrogen-vacancy (NV) centers in diamond will require integration of NV centers with optical networks. Toward this goal, we present the fabrication of single-crystalline gallium phosphide (GaP) resonator-waveguide coupled structures on diamond. We demonstrate coupling between 1 μm diameter GaP disk resonators and waveguides with a loaded Q factor of 3,800, and evaluate their potential for efficient photon collection if integrated with single photon emitters. This work opens a path toward scalable NV entanglement in the hybrid GaP/diamond platform, with the potential to integrate on-chip photon collection, switching, and detection for applications in quantum information processing.

© 2014 Optical Society of America

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(230.4555) Optical devices : Coupled resonators
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Integrated Optics

History
Original Manuscript: March 31, 2014
Revised Manuscript: May 9, 2014
Manuscript Accepted: May 14, 2014
Published: May 28, 2014

Citation
Nicole Thomas, Russell J. Barbour, Yuncheng Song, Minjoo Larry Lee, and Kai-Mei C. Fu, "Waveguide-integrated single-crystalline GaP resonators on diamond," Opt. Express 22, 13555-13564 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-11-13555


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. J. Briegel, D. E. Browne, W. Dür, R. Raussendorf, M. van den Nest, “Measurement-based quantum computation,” Nat. Phys. 5, 19–26 (2009). [CrossRef]
  2. S. C. Benjamin, D. E. Browne, J. Fitzsimons, J. J. L. Morton, “Brokered graph-state quantum computation,” New J. Phys. 8(8), 141 (2006). [CrossRef]
  3. S. C. Benjamin, B. W. Lovett, J. M. Smith, “Prospects for measurement-based quantum computing with solid state spins,” Laser Photon. Rev. 3(6), 556–574 (2009). [CrossRef]
  4. L. M. Duan, M. D. Lukin, J. I. Cirac, P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001). [CrossRef] [PubMed]
  5. L. Childress, J. M. Taylor, A. S. Sørensen, M. D. Lukin, “Fault-Tolerant Quantum Communication Based on Solid-State Photon Emitters,” Phys. Rev. Lett. 96(7), 070504 (2006). [CrossRef] [PubMed]
  6. L. Childress, J. M. Taylor, A. S. Sørensen, M. D. Lukin, “Fault-Tolerant Quantum Repeaters With Minimal Physical Resources and Implementations Based on Single-Photon Emitters,” Phys. Rev. A 72(5), 052330 (2005). [CrossRef]
  7. G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8(5), 383–387 (2009). [CrossRef] [PubMed]
  8. N. Bar-Gill, L. M. Pham, A. Jarmola, D. Budker, R. L. Walsworth, “Solid-state electronic spin coherence time approaching one second,” Nat. Commun. 4, 1743 (2013). [CrossRef] [PubMed]
  9. L. Robledo, L. Childress, H. Bernien, B. Hensen, P. F. A. Alkemade, R. Hanson, “High-fidelity projective read-out of a solid-state spin quantum register,” Nature 477(7366), 574–578 (2011). [CrossRef] [PubMed]
  10. P. C. Maurer, G. Kucsko, C. Latta, L. Jiang, N. Y. Yao, S. D. Bennett, F. Pastawski, D. Hunger, N. Chisholm, M. Markham, D. J. Twitchen, J. I. Cirac, M. D. Lukin, “Room-temperature Quantum Bit Memory Exceeding One Second,” Science 336(6086), 1283–1286 (2012). [CrossRef] [PubMed]
  11. C. Santori, P. E. Barclay, K.-M. C. Fu, R. G. Beausoleil, S. Spillane, M. Fisch, “Nanophotonics for quantum optics using nitrogen-vacancy centers in diamond,” Nanotechnology 21(27), 274008 (2010). [CrossRef] [PubMed]
  12. B. J. M. Hausmann, B. Shields, Q. Quan, P. Maletinsky, M. McCutcheon, J. T. Choy, T. M. Babinec, A. Kubanek, A. Yacoby, M. D. Lukin, M. Lončar, “Integrated diamond networks for quantum nanophotonics,” Nano Lett. 12(3), 1578–1582 (2012). [CrossRef] [PubMed]
  13. A. Faraon, C. Santori, Z. Huang, K.-M.-C. Fu, V. M. Acosta, D. Fattal, R. G. Beausoleil, “Quantum photonic devices in single-crystal diamond,” New J. Phys. 15(2), 025010 (2013). [CrossRef]
  14. B. J. M. Hausmann, I. B. Bulu, P. B. Deotare, M. McCutcheon, V. Venkataraman, M. L. Markham, D. J. Twitchen, M. Lončar, “Integrated High-Quality Factor Optical Resonators in Diamond,” Nano Lett. 13(5), 1898–1902 (2013). [CrossRef] [PubMed]
  15. Z. Huang, A. Faraon, C. Santori, V. Acosta, R. G. Beausoleil, “Microring resonator-based diamond optothermal switch: a building block for a quantum computing network,” Proc. SPIE 8635, 86350E (2013). [CrossRef]
  16. B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, M. Lončar, “An on-chip diamond optical parametric oscillator,” Nat. Photonics 8, 369–374 (2014). [CrossRef]
  17. D. F. Nelson, E. H. Turner, “Electrooptic and Piezoelectric Coefficients and Refractive Index of Gallium Phosphide,” J. Appl. Phys. 39(7), 3337–3343 (1968). [CrossRef]
  18. C. Xiong, W. H. P. Pernice, X. Sun, C. Schuck, K. Y. Fong, H. X. Tang, “Aluminum Nitride as a New Material for Chip-Scale Optomechanics and Nonlinear Optics,” New J. Phys. 14(9), 095014 (2012). [CrossRef]
  19. C. Xiong, W. H. P. Pernice, H. X. Tang, “Low-loss, Silicon Integrated, Aluminum Nitride Photonic Circuits and Their Use for Electro-Optic Signal Processing,” Nano Lett. 12(7), 3562–3568 (2012). [CrossRef] [PubMed]
  20. J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett. 99(18), 181110 (2011). [CrossRef]
  21. P. E. Barclay, K.-M. C. Fu, C. Santori, R. G. Beausoleil, “Chip-based microcavities coupled to nitrogen-vacancy centers in single crystal diamond,” Appl. Phys. Lett. 95(19), 191115 (2009). [CrossRef]
  22. P. E. Barclay, K.-M. C. Fu, C. Santori, A. Faraon, R. G. Beausoleil, “Hybrid nanocavity resonance enhancement of color center emission in diamond,” Phys. Rev. X 1, 011007 (2011).
  23. N. Thomas, R. Barbour, Y. Song, M. L. Lee, K.-M. C. Fu, “Fabrication of GaP disk resonator arrays coupled to nitrogen-vacancy centers in diamond,” Proc. SPIE 8997, 899702 (2014). [CrossRef]
  24. H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, R. Hanson, “Heralded entanglement between solid-state qubits separated by three metres,” Nature 497(7447), 86–90 (2013). [CrossRef] [PubMed]
  25. G. Davies, “Vibronic spectra in diamond,” J. Phys. Chem. 7, 3797–3809 (1974).
  26. P. Siyushev, V. Jacques, I. Aharonovich, F. Kaiser, T. Müller, L. Lombez, M. Atatüre, S. Castelletto, S. Prawer, F. Jelezko, J. Wrachtrup, “Low-temperature optical characterization of a near-infrared single-photon emitter in nanodiamonds,” New J. Phys. 11(11), 113029 (2009). [CrossRef]
  27. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
  28. E. Yablonovitch, T. Gmitter, J. P. Harbison, R. Bhat, “Extreme selectivity in the liftoff of epitaxial GaAs films,” Appl. Phys. Lett. 51(26), 2222–2224 (1987). [CrossRef]
  29. E. Yablonovitch, D. M. Hwang, T. J. Gmitter, L. T. Florez, J. P. Harbison, “Van der Waals bonding of GaAs epitaxial liftoff films onto arbitrary substrates,” Appl. Phys. Lett. 56(24), 2419–2421 (1990). [CrossRef]
  30. K.-M. C. Fu, C. Santori, P. E. Barcley, I. Aharonovich, S. Prawer, N. Meyer, A. M. Holm, R. G. Beausoleil, “Coupling of nitrogen-vacancy centers in diamond to a GaP waveguide,” Appl. Phys. Lett. 93(23), 234107 (2008). [CrossRef]
  31. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010). [CrossRef]
  32. D. S. Weiss, V. Sandoghdar, J. Hare, V. Lefèvre-Seguin, J.-M. Raimond, S. Haroche, “Splitting of high-Q Mie modes induced by light backscattering in silica microspheres,” Opt. Lett. 20(18), 1835–1837 (1995). [CrossRef] [PubMed]
  33. M. L. Gorodetsky, A. D. Pryamikov, V. S. Ilchenko, “Rayleigh scattering in high-Q microspheres,” J. Opt. Soc. Am. B 17(6), 1051–1057 (2000). [CrossRef]
  34. M. Borselli, T. J. Johnson, O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13(5), 1515–1530 (2005). [CrossRef] [PubMed]
  35. M. Mitchell, A. C. Hryciw, P. E. Barclay, “Cavity optomechanics in gallium phosphide microdisks,” Appl. Phys. Lett. 104(14), 141104 (2014). [CrossRef]
  36. K.-M. C. Fu, C. Santori, P. E. Barclay, R. G. Beausoleil, “Conversion of neutral nitrogen-vacancy centers to negatively charged nitrogen-vacancy centers through selective oxidation,” Appl. Phys. Lett. 96(12), 121907 (2010). [CrossRef]
  37. K. Ohno, F. J. Heremans, L. C. Bassett, B. A. Myers, D. M. Toyli, A. C. Bleszynski Jayich, C. J. Palstrøm, D. D. Awschalom, “Engineering shallow spins in diamond with nitrogen delta-doping,” Appl. Phys. Lett. 101(8), 082413 (2012). [CrossRef]
  38. A. M. Edmonds, U. F. S. D’Haenens-Johansson, R. J. Cruddace, M. E. Newton, K.-M. C. Fu, C. Santori, R. G. Beausoleil, D. J. Twitchen, M. L. Markham, “Production of oriented nitrogen-vacancy color centers in synthetic diamond,” Phys. Rev. B 86(3), 035201 (2012). [CrossRef]
  39. D. M. Toyli, C. D. Weis, G. D. Fuchs, T. Schenkel, D. D. Awschalom, “Chip-Scale Nanofabrication of Single Spins and Spin Arrays in Diamond,” Nano Lett. 10(8), 3168–3172 (2010). [CrossRef] [PubMed]
  40. Ph. Tamarat, T. Gaebel, J. R. Rabeau, M. Khan, A. D. Greentree, H. Wilson, L. C. L. Hollenberg, S. Prawer, P. Hemmer, F. Jelezko, J. Wrachtrup, “Stark Shift Control of Single Optical Centers in Diamond,” Phys. Rev. Lett. 97(8), 083002 (2006). [CrossRef] [PubMed]
  41. L. C. Bassett, F. J. Heremans, C. G. Yale, B. B. Buckley, D. D. Awschalom, “Electrical Tuning of Single Nitrogen-Vacancy Center Optical Transitions Enhanced by Photoinduced Fields,” Phys. Rev. Lett. 107(26), 266403 (2011). [CrossRef] [PubMed]
  42. V. M. Acosta, C. Santori, A. Faraon, Z. Huang, K.-M. C. Fu, A. Stacey, D. A. Simpson, K. Ganesan, S. Tomljenovic-Hanic, A. D. Greentree, S. Prawer, R. G. Beausoleil, “Dynamic Stabilization of the Optical Resonances of Single Nitrogen-Vacancy Centers in Diamond,” Phys. Rev. Lett. 108(20), 206401 (2012). [CrossRef] [PubMed]
  43. J. Michl, T. Teraji, S. Zaiser, I. Jakobi, G. Waldherr, F. Dolde, P. Neumann, M. W. Doherty, N. B. Manson, J. Isoya, J. Wrachtrup, “Perfect alignement and preferential orientation of nitrogen-vacancy centers during chemical vapor deposition diamond growth on (111) surfaces,” Appl. Phys. Lett. 104(10), 102407 (2014). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited