OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 11 — Jun. 2, 2014
  • pp: 13586–13599

Aperture-scanning Fourier ptychography for 3D refocusing and super-resolution macroscopic imaging

Siyuan Dong, Roarke Horstmeyer, Radhika Shiradkar, Kaikai Guo, Xiaoze Ou, Zichao Bian, Huolin Xin, and Guoan Zheng  »View Author Affiliations


Optics Express, Vol. 22, Issue 11, pp. 13586-13599 (2014)
http://dx.doi.org/10.1364/OE.22.013586


View Full Text Article

Enhanced HTML    Acrobat PDF (2979 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report an imaging scheme, termed aperture-scanning Fourier ptychography, for 3D refocusing and super-resolution macroscopic imaging. The reported scheme scans an aperture at the Fourier plane of an optical system and acquires the corresponding intensity images of the object. The acquired images are then synthesized in the frequency domain to recover a high-resolution complex sample wavefront; no phase information is needed in the recovery process. We demonstrate two applications of the reported scheme. In the first example, we use an aperture-scanning Fourier ptychography platform to recover the complex hologram of extended objects. The recovered hologram is then digitally propagated into different planes along the optical axis to examine the 3D structure of the object. We also demonstrate a reconstruction resolution better than the detector pixel limit (i.e., pixel super-resolution). In the second example, we develop a camera-scanning Fourier ptychography platform for super-resolution macroscopic imaging. By simply scanning the camera over different positions, we bypass the diffraction limit of the photographic lens and recover a super-resolution image of an object placed at the far field. This platform’s maximum achievable resolution is ultimately determined by the camera’s traveling range, not the aperture size of the lens. The FP scheme reported in this work may find applications in 3D object tracking, synthetic aperture imaging, remote sensing, and optical/electron/X-ray microscopy.

© 2014 Optical Society of America

OCIS Codes
(100.3190) Image processing : Inverse problems
(100.6640) Image processing : Superresolution
(110.0110) Imaging systems : Imaging systems
(170.0180) Medical optics and biotechnology : Microscopy
(090.1995) Holography : Digital holography

ToC Category:
Imaging Systems

History
Original Manuscript: April 3, 2014
Revised Manuscript: May 14, 2014
Manuscript Accepted: May 15, 2014
Published: May 29, 2014

Virtual Issues
Vol. 9, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Siyuan Dong, Roarke Horstmeyer, Radhika Shiradkar, Kaikai Guo, Xiaoze Ou, Zichao Bian, Huolin Xin, and Guoan Zheng, "Aperture-scanning Fourier ptychography for 3D refocusing and super-resolution macroscopic imaging," Opt. Express 22, 13586-13599 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-11-13586


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Zheng, R. Horstmeyer, C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7(9), 739–745 (2013). [CrossRef]
  2. X. Ou, R. Horstmeyer, C. Yang, G. Zheng, “Quantitative phase imaging via Fourier ptychographic microscopy,” Opt. Lett. 38(22), 4845–4848 (2013). [CrossRef] [PubMed]
  3. S. Dong, R. Shiradkar, P. Nanda, G. Zheng, “Spectral multiplexing and coherent-state decomposition in Fourier ptychographic imaging,” Biomed. Opt. Express 5(6), 1757–1767 (2014). [CrossRef]
  4. R. Gerchberg, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg.) 35, 237 (1972).
  5. J. R. Fienup, “Reconstruction of an object from the modulus of its Fourier transform,” Opt. Lett. 3(1), 27–29 (1978). [CrossRef] [PubMed]
  6. J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. 21(15), 2758–2769 (1982). [CrossRef] [PubMed]
  7. R. A. Gonsalves, “Phase retrieval and diversity in adaptive optics,” Opt. Eng. 21, 215829 (1982).
  8. R. A. Gonsalves, “Phase retrieval by differential intensity measurements,” J. Opt. Soc. Am. A 4(1), 166–170 (1987). [CrossRef]
  9. L. Allen, M. Oxley, “Phase retrieval from series of images obtained by defocus variation,” Opt. Commun. 199(1-4), 65–75 (2001). [CrossRef]
  10. V. Elser, “Phase retrieval by iterated projections,” J. Opt. Soc. Am. A 20(1), 40–55 (2003). [CrossRef] [PubMed]
  11. L. Waller, S. S. Kou, C. J. R. Sheppard, G. Barbastathis, “Phase from chromatic aberrations,” Opt. Express 18(22), 22817–22825 (2010). [CrossRef] [PubMed]
  12. C.-H. Lu, C. Barsi, M. O. Williams, J. N. Kutz, J. W. Fleischer, “Phase retrieval using nonlinear diversity,” Appl. Opt. 52(10), D92–D96 (2013). [CrossRef] [PubMed]
  13. L. Taylor, “The phase retrieval problem,” IEEE Trans. Antennas Propag. 29(2), 386–391 (1981). [CrossRef]
  14. B. H. Dean, C. W. Bowers, “Diversity selection for phase-diverse phase retrieval,” J. Opt. Soc. Am. A 20(8), 1490–1504 (2003). [CrossRef] [PubMed]
  15. H. M. L. Faulkner, J. M. Rodenburg, “Movable Aperture Lensless Transmission Microscopy: A Novel Phase Retrieval Algorithm,” Phys. Rev. Lett. 93(2), 023903 (2004). [CrossRef] [PubMed]
  16. M. Guizar-Sicairos, J. R. Fienup, “Phase retrieval with transverse translation diversity: a nonlinear optimization approach,” Opt. Express 16(10), 7264–7278 (2008). [CrossRef] [PubMed]
  17. P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, F. Pfeiffer, “High-Resolution Scanning X-Ray Diffraction Microscopy,” Science 321(5887), 379–382 (2008). [CrossRef] [PubMed]
  18. P. Thibault, M. Dierolf, O. Bunk, A. Menzel, F. Pfeiffer, “Probe retrieval in ptychographic coherent diffractive imaging,” Ultramicroscopy 109(4), 338–343 (2009). [CrossRef] [PubMed]
  19. M. Dierolf, P. Thibault, A. Menzel, C. M. Kewish, K. Jefimovs, I. Schlichting, K. von König, O. Bunk, F. Pfeiffer, “Ptychographic coherent diffractive imaging of weakly scattering specimens,” New J. Phys. 12(3), 035017 (2010). [CrossRef]
  20. A. M. Maiden, J. M. Rodenburg, M. J. Humphry, “Optical ptychography: a practical implementation with useful resolution,” Opt. Lett. 35(15), 2585–2587 (2010). [CrossRef] [PubMed]
  21. F. Hüe, J. M. Rodenburg, A. M. Maiden, P. A. Midgley, “Extended ptychography in the transmission electron microscope: Possibilities and limitations,” Ultramicroscopy 111(8), 1117–1123 (2011). [CrossRef] [PubMed]
  22. A. Shenfield, J. M. Rodenburg, “Evolutionary determination of experimental parameters for ptychographical imaging,” J. Appl. Phys. 109(12), 124510 (2011). [CrossRef]
  23. M. J. Humphry, B. Kraus, A. C. Hurst, A. M. Maiden, J. M. Rodenburg, “Ptychographic electron microscopy using high-angle dark-field scattering for sub-nanometre resolution imaging,” Nat. Commun. 3, 730 (2012). [CrossRef] [PubMed]
  24. T. B. Edo, D. J. Batey, A. M. Maiden, C. Rau, U. Wagner, Z. D. Pešić, T. A. Waigh, J. M. Rodenburg, “Sampling in x-ray ptychography,” Phys. Rev. A 87(5), 053850 (2013). [CrossRef]
  25. S. Marchesini, A. Schirotzek, C. Yang, H.- Wu, F. Maia, “Augmented projections for ptychographic imaging,” Inverse Probl. 29(11), 115009 (2013). [CrossRef]
  26. W. Hoppe, G. Strube, “Diffraction in inhomogeneous primary wave fields. 2. Optical experiments for phase determination of lattice interferences,” Acta Crystallogr. A 25, 502–507 (1969). [CrossRef]
  27. J. M. Rodenburg, R. H. T. Bates, “The Theory of Super-Resolution Electron Microscopy Via Wigner-Distribution Deconvolution,” Philos. Trans. R. Soc., A 339(1655), 521–553 (1992). [CrossRef]
  28. G. Zheng, “Fourier ptychographic imaging,” IEEE Photonics Journal 6, April Issue (2014).
  29. G. Zheng, X. Ou, R. Horstmeyer, J. Chung, C. Yang, “Fourier Ptychographic Microscopy: A Gigapixel Superscope for Biomedicine,” Opt. Photon. News 25, 26–33 (2014).
  30. C.-K. Liang, T.-H. Lin, B.-Y. Wong, C. Liu, H. H. Chen, “Programmable aperture photography: multiplexed light field acquisition,” ACM Trans. Graph. 27(3), 1–10 (2008). [CrossRef]
  31. G. Zheng, S. A. Lee, S. Yang, C. Yang, “Sub-pixel resolving optofluidic microscope for on-chip cell imaging,” Lab Chip 10(22), 3125–3129 (2010). [CrossRef] [PubMed]
  32. W. Bishara, T.-W. Su, A. F. Coskun, A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution,” Opt. Express 18(11), 11181–11191 (2010). [CrossRef] [PubMed]
  33. Z. Bian, S. Dong, G. Zheng, “Adaptive system correction for robust Fourier ptychographic imaging,” Opt. Express 21(26), 32400–32410 (2013). [CrossRef] [PubMed]
  34. A. W. Lohmann, R. G. Dorsch, D. Mendlovic, Z. Zalevsky, C. Ferreira, “Space-bandwidth product of optical signals and systems,” J. Opt. Soc. Am. A. 13(3), 470–473 (1996). [CrossRef]
  35. O. S. Cossairt, D. Miau, and S. K. Nayar, “Gigapixel computational imaging,” in Computational Photography (ICCP),2011IEEE International Conference on, (IEEE, 2011), 1–8. [CrossRef]
  36. M. Ben-Ezra, “A digital gigapixel large-format tile-scan camera,” IEEE Comput. Graph. Appl. 31(1), 49–61 (2011). [CrossRef] [PubMed]
  37. G. Zheng, X. Ou, C. Yang, “0.5 gigapixel microscopy using a flatbed scanner,” Biomed. Opt. Express 5(1), 1–8 (2014). [CrossRef] [PubMed]
  38. A. B. Parthasarathy, K. K. Chu, T. N. Ford, J. Mertz, “Quantitative phase imaging using a partitioned detection aperture,” Opt. Lett. 37(19), 4062–4064 (2012). [CrossRef] [PubMed]
  39. I. Iglesias, “Pyramid phase microscopy,” Opt. Lett. 36(18), 3636–3638 (2011). [CrossRef] [PubMed]
  40. L. Tian, J. Wang, L. Waller, “3D differential phase-contrast microscopy with computational illumination using an LED array,” Opt. Lett. 39(5), 1326–1329 (2014). [CrossRef] [PubMed]
  41. M. Daneshpanah, B. Javidi, “Tracking biological microorganisms in sequence of 3D holographic microscopy images,” Opt. Express 15(17), 10761–10766 (2007). [CrossRef] [PubMed]
  42. M. Daneshpanah, S. Zwick, F. Schaal, M. Warber, B. Javidi, W. Osten, “3D Holographic Imaging and Trapping for Non-Invasive Cell Identification and Tracking,” Display Technology, Journalism 6, 490–499 (2010).
  43. X. Ou, G. Zheng, C. Yang, “Embedded pupil function recovery for Fourier ptychographic microscopy,” Opt. Express 22(5), 4960–4972 (2014). [CrossRef] [PubMed]
  44. S. C. Park, M. K. Park, M. G. Kang, “Super-resolution image reconstruction: a technical overview,” IEEE Signal Processing Mag. 20(3), 21–36 (2003). [CrossRef]
  45. J. C. Gillette, T. M. Stadtmiller, R. C. Hardie, “Aliasing reduction in staring infrared imagers utilizing subpixel techniques,” Opt. Eng. 34(11), 3130–3137 (1995). [CrossRef]
  46. M. Ryle, A. Hewish, “The synthesis of large radio telescopes,” Mon. Not. R. Astron. Soc. 120, 220 (1960).
  47. A. B. Meinel, “Aperture synthesis using independent telescopes,” Appl. Opt. 9(11), 2501 (1970). [CrossRef] [PubMed]
  48. X. Xiao, B. Javidi, M. Martinez-Corral, A. Stern, “Advances in three-dimensional integral imaging: sensing, display, and applications [Invited],” Appl. Opt. 52(4), 546–560 (2013). [CrossRef] [PubMed]
  49. A. Stern, B. Javidi, “3-D computational synthetic aperture integral imaging (COMPSAII),” Opt. Express 11(19), 2446–2451 (2003). [CrossRef] [PubMed]
  50. J.-S. Jang, B. Javidi, “Three-dimensional synthetic aperture integral imaging,” Opt. Lett. 27(13), 1144–1146 (2002). [CrossRef] [PubMed]
  51. V. Mico, Z. Zalevsky, J. García, “Superresolution optical system by common-path interferometry,” Opt. Express 14(12), 5168–5177 (2006). [CrossRef] [PubMed]
  52. J. García, Z. Zalevsky, D. Fixler, “Synthetic aperture superresolution by speckle pattern projection,” Opt. Express 13(16), 6073–6078 (2005). [CrossRef] [PubMed]
  53. V. Mico, Z. Zalevsky, P. García-Martínez, J. García, “Synthetic aperture superresolution with multiple off-axis holograms,” J. Opt. Soc. Am. A 23(12), 3162–3170 (2006). [CrossRef] [PubMed]
  54. V. Mico, Z. Zalevsky, P. Garcia-Martinez, J. Garcia, “Single-step superresolution by interferometric imaging,” Opt. Express 12(12), 2589–2596 (2004). [CrossRef] [PubMed]
  55. S. A. Alexandrov, T. R. Hillman, T. Gutzler, D. D. Sampson, “Synthetic aperture Fourier holographic optical microscopy,” Phys. Rev. Lett. 97(16), 168102 (2006). [CrossRef] [PubMed]
  56. J. Di, J. Zhao, H. Jiang, P. Zhang, Q. Fan, W. Sun, “High resolution digital holographic microscopy with a wide field of view based on a synthetic aperture technique and use of linear CCD scanning,” Appl. Opt. 47(30), 5654–5659 (2008). [CrossRef] [PubMed]
  57. T. R. Hillman, T. Gutzler, S. A. Alexandrov, D. D. Sampson, “High-resolution, wide-field object reconstruction with synthetic aperture Fourier holographic optical microscopy,” Opt. Express 17(10), 7873–7892 (2009). [CrossRef] [PubMed]
  58. V. Vaish, M. Levoy, R. Szeliski, C. L. Zitnick, and S. B. Kang, “Reconstructing Occluded Surfaces Using Synthetic Apertures: Stereo, Focus and Robust Measures,” in Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition-Volume 2, (IEEE Computer Society, 2006), pp. 2331–2338. [CrossRef]
  59. B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez, A. Barth, A. Adams, M. Horowitz, and M. Levoy, “High performance imaging using large camera arrays,” in ACM Transactions on Graphics (TOG), (ACM, 2005), 765–776.
  60. B. S. Wilburn, M. Smulski, H.-H. K. Lee, and M. A. Horowitz, “Light field video camera,” in Electronic Imaging 2002, (International Society for Optics and Photonics, 2001), 29–36.
  61. G. Zheng, C. Kolner, C. Yang, “Microscopy refocusing and dark-field imaging by using a simple LED array,” Opt. Lett. 36(20), 3987–3989 (2011). [CrossRef] [PubMed]
  62. A. Wax, Coherent Light Microscopy: Imaging and Quantitative Phase Analysis (Springer, 2011), Vol. 46.
  63. G. Zheng, X. Ou, R. Horstmeyer, C. Yang, “Characterization of spatially varying aberrations for wide field-of-view microscopy,” Opt. Express 21(13), 15131–15143 (2013). [CrossRef] [PubMed]
  64. D. B. Williams and C. B. Carter, The Transmission Electron Microscope (Springer, 1996).
  65. D. J. Brady, Optical Imaging and Spectroscopy (John Wiley & Sons, 2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MP4 (10695 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited