OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 11 — Jun. 2, 2014
  • pp: 13616–13624

Modified E91 protocol demonstration with hybrid entanglement photon source

Mikio Fujiwara, Ken-ichiro Yoshino, Yoshihiro Nambu, Taro Yamashita, Shigehito Miki, Hirotaka Terai, Zhen Wang, Morio Toyoshima, Akihisa Tomita, and Masahide Sasaki  »View Author Affiliations

Optics Express, Vol. 22, Issue 11, pp. 13616-13624 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1061 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on an experimental demonstration of the modified Ekert 91 protocol of quantum key distribution using a hybrid entanglement source with two different degrees of freedoms, a 1550 nm time-bin qubit and 810 nm polarization qubit. The violation of the Clauser-Horne-Shimony-Holt inequality could be demonstrated for the entanglement between the polarization qubit in free space and the time-bin qubit through 20 km fiber transmission. The secure key rate in our system is estimated 70-150 bps.

© 2014 Optical Society of America

OCIS Codes
(060.5565) Fiber optics and optical communications : Quantum communications
(270.5568) Quantum optics : Quantum cryptography

ToC Category:
Quantum Optics

Original Manuscript: April 9, 2014
Revised Manuscript: May 23, 2014
Manuscript Accepted: May 23, 2014
Published: May 29, 2014

Mikio Fujiwara, Ken-ichiro Yoshino, Yoshihiro Nambu, Taro Yamashita, Shigehito Miki, Hirotaka Terai, Zhen Wang, Morio Toyoshima, Akihisa Tomita, and Masahide Sasaki, "Modified E91 protocol demonstration with hybrid entanglement photon source," Opt. Express 22, 13616-13624 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. http://www.thenewamerican.com/usnews/item/16086-nsa-taps-directly-into-undersea-fiber-optic-data-cables
  2. N. Gisin, G. Ribordy, W. Tittel, H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002). [CrossRef]
  3. C. Elliott, A. Colvin, D. Pearson, O. Pikalo, J. Schlafer, H. Yeh, “Current status of the DARPA Quantum Network,” Proc. SPIE 5815, 138–149 (2005). [CrossRef]
  4. M. Peev, C. Pacher, R. Alleaume, C. Barreiro, W. Boxleitner, J. Bouda, R. Tualle-Brouri, E. Diamanti, M. Dianati, T. Debuisschert, J. F. Dynes, S. Fasel, S. Fossier, M. Fuerst, J.-D. Gautier, O. Gay, N. Gisin, P. Grangier, A. Happe, Y. Hasani, M. Hentchel, H. Hübel, G. Humer, T. Länger, M. Legre, R. Lieger, J. Lodewyck, T. Lorünser, N. Lütkenhaus, A. Marhold, T. Matyus, O. Maurhart, L. Monat, S. Nauerth, J.-B. Page, E. Querasser, G. Ribordy, A. Poppe, L. Salvail, S. Robyr, M. Suda, A. W. Sharpe, A. J. Shields, D. Stucki, C. Tamas, T. Themel, R. T. Thew, Y. Thoma, A. Treiber, P. Trinkler, F. Vannel, N. Walenta, H. Weier, H. Weinfurter, I. Wimberger, Z. L. Yuan, H. Zbinden, A. Zeilinger, “The SECOQC quantum key distribution network in Vienna,” New J. Phys. 11(7), 075001 (2009). [CrossRef]
  5. M. Sasaki, M. Fujiwara, H. Ishizuka, W. Klaus, K. Wakui, M. Takeoka, S. Miki, T. Yamashita, Z. Wang, A. Tanaka, K. Yoshino, Y. Nambu, S. Takahashi, A. Tajima, A. Tomita, T. Domeki, T. Hasegawa, Y. Sakai, H. Kobayashi, T. Asai, K. Shimizu, T. Tokura, T. Tsurumaru, M. Matsui, T. Honjo, K. Tamaki, H. Takesue, Y. Tokura, J. F. Dynes, A. R. Dixon, A. W. Sharpe, Z. L. Yuan, A. J. Shields, S. Uchikoga, M. Legré, S. Robyr, P. Trinkler, L. Monat, J. B. Page, G. Ribordy, A. Poppe, A. Allacher, O. Maurhart, T. Länger, M. Peev, A. Zeilinger, “Field test of quantum key distribution in the Tokyo QKD Network,” Opt. Express 19(11), 10387–10409 (2011). [CrossRef] [PubMed]
  6. I. D. Quantique, http://www.idquantique.com
  7. Q. Magi, Technologies, Inc., http://www.magiqtech.com
  8. http://finance.yahoo.com/news/battelle-installs-first-commercial-quantum-130000271.html
  9. http://news.xinhuanet.com/english/china/2012-02/21/c_131423541.html
  10. C. C. W. Lim, M. Curty, N. Walenta, F. Xu, and H. Zbinden, “Concise security bounds for practical decoy-state quantum key distribution,” arXiv:quant-ph/1311.7129v1 (2013).
  11. K. Tamaki, M. Curty, G. Kato, H.-K. Lo, and K. Azuma, “Loss-tolerant quantum cryptography with imperfect source,” arXiv:quant-ph/1312.3514v2 (2013).
  12. D. Stucki, M. Legre, F. Buntschu, B. Clausen, N. Felber, N. Gisin, L. Henzen, P. Junod, G. Litzistorf, P. Monbaron, L. Monat, J.-B. Page, D. Perroud, G. Ribordy, A. Rochas, S. Robyr, J. Tavares, R. Thew, P. Trinkler, S. Ventura, R. Voirol, N. Walenta, H. Zbinden, “Long-term performance of the SwissQuantum quantum key distribution network in a field environment,” New J. Phys. 13(12), 123001 (2011). [CrossRef]
  13. J. F. Dynes, I. Choi, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, M. Fujiwara, M. Sasaki, A. J. Shields, “Stability of high bit rate quantum key distribution on installed fiber,” Opt. Express 20(15), 16339–16347 (2012). [CrossRef]
  14. K. Yoshino, T. Ochi, M. Fujiwara, M. Sasaki, A. Tajima, “Maintenance-free operation of WDM quantum key distribution system through a field fiber over 30 days,” Opt. Express 21(25), 31395–31401 (2013). [CrossRef] [PubMed]
  15. H.-K. Lo, X. Ma, K. Chen, “Decoy state quantum key distribution,” Phys. Rev. Lett. 94(23), 230504 (2005). [CrossRef] [PubMed]
  16. X. Ma, B. Qi, Y. Zhao, H.-K. Lo, “Practical decoy state for quantum key distribution,” Phys. Rev. A 72(1), 012326 (2005). [CrossRef]
  17. C. H. Bennett and G. Brassard, “Quantum cryptography: public-key distribution and coin tossing,” in Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing (Institute of Electrical and Electronics Engineers, New York, 1984), pp. 175–179.
  18. M. Lucamarini, K. A. Patel, J. F. Dynes, B. Fröhlich, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, R. V. Penty, A. J. Shields, “Efficient decoy-state quantum key distribution with quantified security,” Opt. Express 21(21), 24550–24565 (2013). [CrossRef] [PubMed]
  19. K. De Greve, P. L. McMahon, L. Yu, J. S. Pelc, C. Jones, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, Y. Yamamoto, “Complete tomography of a high-fidelity solid-state entangled spin-photon qubit pair,” Nat. Commun. 4(2228), 2228 (2013). [PubMed]
  20. T. Inagaki, N. Matsuda, O. Tadanaga, M. Asobe, H. Takesue, “Entanglement distribution over 300 km of fiber,” Opt. Express 21(20), 23241–23249 (2013). [CrossRef] [PubMed]
  21. R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3(7), 481–486 (2007). [CrossRef]
  22. W. Tittel, J. Brendel, H. Zbinden, N. Gisin, “Quantum cryptography using entangled photons in energy-time Bell states,” Phys. Rev. Lett. 84(20), 4737–4740 (2000). [CrossRef] [PubMed]
  23. M. Fujiwara, M. Toyoshima, M. Sasaki, K. Yoshino, Y. Nambu, A. Tomita, “Performance of hybrid entanglement photon pair source for quantum key distribution,” Appl. Phys. Lett. 95(26), 261103 (2009). [CrossRef]
  24. A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67(6), 661–663 (1991). [CrossRef] [PubMed]
  25. A. Acín, S. Massar, S. Pironio, “Efficient quantum key distribution secure against no-signalling eavesdroppers,” New J. Phys. 8(126), 1–11 (2006).
  26. A. Ling, M. P. Peloso, I. Marcikic, V. Sacarani, A. Lamas-Linares, C. Kurtsiefer, “Experimental quantum key distribution based on a Bell test,” Phys. Rev. A 78(2), 020301 (2008). [CrossRef]
  27. Y. Nambu, K. Yoshino, A. Tomita, “Quantum encoder and decoder for practical quantum key distribution using a planar lightwave circuit,” J. Mod. Opt. 55(12), 1953–1970 (2008). [CrossRef]
  28. M. Fujiwara, M. Toyoshima, M. Sasaki, K. Yoshino, Y. Nambu, and A. Tomita, “Time-bin polarization format exchange technique for entanglement optical source,” US patent #8509446.
  29. S. Miki, T. Yamashita, H. Terai, Z. Wang, “High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler,” Opt. Express 21(8), 10208–10214 (2013). [CrossRef] [PubMed]
  30. T. Yamashita, S. Miki, H. Terai, Z. Wang, “Low-filling-factor superconducting single photon detector with high system detection efficiency,” Opt. Express 21(22), 27177–27184 (2013). [CrossRef] [PubMed]
  31. J. F. Clauser, M. A. Horne, A. Shimony, R. A. Holt, “Proposed experiment to test local hidden variable theories,” Phys. Rev. Lett. 23(15), 880–884 (1969). [CrossRef]
  32. A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, V. Scarani, “Device-independent security of quantum cryptography against collective attacks,” Phys. Rev. Lett. 98(23), 230501 (2007). [CrossRef] [PubMed]
  33. N. H. Y. Ng, S. K. Joshi, C. C. Ming, C. Kurtsiefer, S. Wehner, “Experimental implementation of bit commitment in the noisy-storage model,” Nat. Commun. 3(1326), 1326 (2012). [CrossRef] [PubMed]
  34. C. Erven, N. Ng, N. Gigov, R. Laflamme, S. Wehner, and G. Weihs, “An experimental implementation of oblivious transfer in noisy storage model,” arXiv:quant-ph/1308.5098v3 (2014).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited