OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 11 — Jun. 2, 2014
  • pp: 13634–13640

Optoelectronic oscillator for a measurement of acoustic velocity in acousto-optic device

Chang Hwa Lee and Sin Hyuk Yim  »View Author Affiliations

Optics Express, Vol. 22, Issue 11, pp. 13634-13640 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1303 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report a novel means of measuring the acoustic velocity based on a well-known acousto-optic interaction. With an acousto-optic modulator (AOM), we construct an optoelectronic oscillator (OEO) that can measure the acoustic velocity in the AOM directly. The free spectral range between the modes is a function of the total loop length of the OEO, which is mainly dependent on the propagation time of the acoustic wave through the AOM. By changing the propagation time, we measured the acoustic velocity from the variation of the free spectral range. The results are reported and compared with earlier results. This method is insensitive to the variation of the optical phase shift. In addition, the high frequency-stability and microwave spectral purity of the OEO allow reliable and precise measurements.

© 2014 Optical Society of America

OCIS Codes
(130.6010) Integrated optics : Sensors
(230.0250) Optical devices : Optoelectronics
(230.1040) Optical devices : Acousto-optical devices
(230.4910) Optical devices : Oscillators

ToC Category:

Original Manuscript: April 15, 2014
Revised Manuscript: May 19, 2014
Manuscript Accepted: May 22, 2014
Published: May 29, 2014

Chang Hwa Lee and Sin Hyuk Yim, "Optoelectronic oscillator for a measurement of acoustic velocity in acousto-optic device," Opt. Express 22, 13634-13640 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. X. S. Yao, L. Maleki, “Optoelectronic microwave oscillator,” J. Opt. Soc. Am. B 13(8), 1725–1735 (1996). [CrossRef]
  2. L. Maleki, “The opto-electronic oscillator (OEO): review and recent progress,” in Proceedings of IEEE Conference on European Frequency and Time Forum (Institute of Electrical and Electronics Engineers, Gothenburg, 2012), pp. 497–500. [CrossRef]
  3. M. Haji, L. Hou, A. E. Kelly, J. Akbar, J. H. Marsh, J. M. Arnold, C. N. Ironside, “High frequency optoelectronic oscillators based on the optical feedback of semiconductor mode-locked laser diodes,” Opt. Express 20(3), 3268–3274 (2012). [CrossRef] [PubMed]
  4. D. Strekalov, A. B. Matsko, N. Yu, A. A. Savchenkov, L. Maleki, “Application of vertical cavity surface emitting lasers in self-oscillating atomic clocks,” J. Mod. Opt. 53(16-17), 2469–2484 (2006). [CrossRef]
  5. X. S. Yao, L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron. 32(7), 1141–1149 (1996). [CrossRef]
  6. O. Okusaga, E. J. Adles, E. C. Levy, W. Zhou, G. M. Carter, C. R. Menyuk, M. Horowitz, “Spurious mode reduction in dual injection-locked optoelectronic oscillators,” Opt. Express 19(7), 5839–5854 (2011). [CrossRef] [PubMed]
  7. W. H. Tseng, K. M. Feng, “Impact of fiber delay fluctuation on reference injection-locked optoelectronic oscillators,” Opt. Lett. 37(17), 3525–3527 (2012). [CrossRef] [PubMed]
  8. I. Ozdur, M. Akbulut, N. Hoghooghi, D. Mandridis, M. U. Piracha, P. J. Delfyett, “Optoelectronic loop design with 1000 finesse Fabry-Perot etalon,” Opt. Lett. 35(6), 799–801 (2010). [CrossRef] [PubMed]
  9. J. M. Kim, D. Cho, “Optoelectronic oscillator stabilized to an intra-loop Fabry-Perot cavity by a dual servo system,” Opt. Express 18(14), 14905–14912 (2010). [CrossRef] [PubMed]
  10. F. Kong, W. Li, J. Yao, “Transverse load sensing based on a dual-frequency optoelectronic oscillator,” Opt. Lett. 38(14), 2611–2613 (2013). [CrossRef] [PubMed]
  11. L. D. Nguyen, K. Nakatani, B. Journet, “Refractive index measurement by using an optoelectronic oscillator,” IEEE Photon. Technol. Lett. 22(12), 857–859 (2010). [CrossRef]
  12. T. Zhang, J. Zhu, T. Guo, J. Wang, S. Ye, “Improving accuracy of distance measurements based on an optoelectronic oscillator by measuring variation of fiber delay,” Appl. Opt. 52(15), 3495–3499 (2013). [CrossRef] [PubMed]
  13. Crystal Technology, Palo Alto, California, USA.
  14. N. Uchida, Y. Ohmachi, “Elastic and photoelastic properties of TeO2 single crystal,” J. Appl. Phys. 40(12), 4692–4695 (1969). [CrossRef]
  15. A. Vernaleken, M. G. Cohen, H. Metcalf, “Interferometric measurement of acoustic velocity in PbMoO4 and TeO2.,” Appl. Opt. 46(29), 7117–7119 (2007). [CrossRef] [PubMed]
  16. D. Strekalov, D. Aveline, N. Yu, R. Thompson, A. Matsko, L. Maleki, “Stabilizing an optoelectronic microwave oscillator with photonic filters,” J. Lightwave Technol. 21(12), 3052–3061 (2003). [CrossRef]
  17. S. Tallur and S. A. Bhave, “Monolithic 2 GHz electrostatically actuated MEMS oscillator with opto-mechanical frequency multiplier,” in Proceedings of IEEE Conference on Solid-state Sensors, Actuators and Microsystems (Transducers and Eurosensors, Barcelona, 2013), pp. 1472–1475.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited