OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 11 — Jun. 2, 2014
  • pp: 13671–13679

Quantum theory of a spaser-based nanolaser

Vladimir M. Parfenyev and Sergey S. Vergeles  »View Author Affiliations

Optics Express, Vol. 22, Issue 11, pp. 13671-13679 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1216 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a quantum theory of a spaser-based nanolaser, under the bad-cavity approximation. We find first- and second-order correlation functions g(1)(τ) and g(2)(τ) below and above the generation threshold, and obtain the average number of plasmons in the cavity. The latter is shown to be of the order of unity near the generation threshold, where the spectral line narrows considerably. In this case the coherence is preserved in a state of active atoms in contradiction to the good-cavity lasers, where the coherence is preserved in a state of photons. The damped oscillations in g(2)(τ) above the generation threshold indicate the unusual character of amplitude fluctuations of polarization and population, which become interconnected in this case. Obtained results allow to understand the fundamental principles of operation of nanolasers.

© 2014 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(270.2500) Quantum optics : Fluctuations, relaxations, and noise
(270.3430) Quantum optics : Laser theory

ToC Category:
Lasers and Laser Optics

Original Manuscript: March 17, 2014
Revised Manuscript: May 16, 2014
Manuscript Accepted: May 19, 2014
Published: May 29, 2014

Vladimir M. Parfenyev and Sergey S. Vergeles, "Quantum theory of a spaser-based nanolaser," Opt. Express 22, 13671-13679 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. I. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Opt. Express 19, 22029–22106 (2011). [CrossRef] [PubMed]
  2. M. I. Stockman, “The spaser as a nanoscale quantum generator and ultrafast amplifier,” J. Opt. 12, 024004 (2010). [CrossRef]
  3. D. Bergman, M. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90, 027402 (2003). [CrossRef] [PubMed]
  4. M.A. Noginov, G. Zhu, A.M. Belgrave, R. Bakker, V.M. Shalaev, E.E. Narimanov, S. Stout, E. Herz, T. Suteewong, U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009). [CrossRef] [PubMed]
  5. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009). [CrossRef] [PubMed]
  6. M. O. Scully, M. Sh. Zubairy, Quantum Optics (Cambridge University Press, 1997). [CrossRef]
  7. H.J. Carmichael, Statistical Methods in Quantum Optics 1 (Springer, New York, 2010).
  8. J. G. Bohnet, Z. Chen, J. M. Weiner, D. Meiser, M. J. Holland, J. K. Thompson, “A steady-state superradiant laser with less than one intracavity photon,” Nature 484, 78–81 (2012). [CrossRef] [PubMed]
  9. V. M. Parfenyev, S. S. Vergeles, “Intensity-dependent frequency shift in surface plasmon amplification by stimulated emission of radiation,” Phys. Rev. A 86, 043824 (2012). [CrossRef]
  10. J. I. Cirac, “Interaction of a two-level atom with a cavity mode in the bad-cavity limit,” Phys. Rev. A 46, 4354–4362 (1992). [CrossRef] [PubMed]
  11. E. S. Andrianov, A. A. Pukhov, A. V. Dorofeenko, A. P. Vinogradov, A. A. Lisyansky, “Spectrum of surface plasmons excited by spontaneous quantum dot transitions,” JETP 117, 205–213 (2013). [CrossRef]
  12. S. Gnutzmann, “Photon statistics of a bad-cavity laser near threshold,” EPJD 4, 109–123 (1998). [CrossRef]
  13. J. Trieschmann, S. Xiao, L. J. Prokopeva, V. P. Drachev, A. V. Kildishev, “Experimental retrieval of the kinetic parameters of a dye in a solid film,” Opt. Express 19, 18253–18259 (2011). [CrossRef] [PubMed]
  14. J. Kim, V. P. Drachev, Z. Jacob, G. V. Naik, A. Boltasseva, E. E. Narimanov, V. M. Shalaev, “Improving the radiative decay rate for dye molecules with hyperbolic metamaterials,” Opt. Express 20, 8100–8116 (2012). [CrossRef] [PubMed]
  15. V. Temnov, U. Woggon, “Photon statistics in the cooperative spontaneous emission,” Opt. Express 17, 5774–5782 (2009). [CrossRef] [PubMed]
  16. E. S. Andrianov, D. G. Baranov, A. A. Pukhov, A. V. Dorofeenko, A. P. Vinogradov, A. A. Lisyansky, “Loss compensation by spasers in plasmonic systems,” Opt. Express 21, 13467–13478 (2013). [CrossRef] [PubMed]
  17. H. J. Carmichael, Statistical Methods in Quantum Optics 2 (Springer, New York, 2008). [CrossRef]
  18. V. Temnov, U. Woggon, “Superradiance and subradiance in an inhomogeneously broadened ensemble of two-level systems coupled to a low-Q cavity,” Phys. Rev. Lett. 95, 243602 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited