OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 11 — Jun. 2, 2014
  • pp: 13680–13690

Performance of a fire detector based on a compact laser spectroscopic carbon monoxide sensor

A. Hangauer, J. Chen, R. Strzoda, M. Fleischer, and M.-C. Amann  »View Author Affiliations


Optics Express, Vol. 22, Issue 11, pp. 13680-13690 (2014)
http://dx.doi.org/10.1364/OE.22.013680


View Full Text Article

Enhanced HTML    Acrobat PDF (1743 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper we show the suitability of a miniaturized tunable diode laser spectroscopy (TDLS)-based carbon-monoxide (CO) sensor for fire detection applications. The sensor utilizes a vertical-cavity surface-emitting laser (VCSEL) and inherent calibration scheme with reference gas filled in the photodetector housing. The fire-detection experiments are carried out under realistic conditions as described in the European standard EN54. The CO generation of all class C fires (according to EN54) could be well resolved. The cross-sensitivity to other substances was found to be very low: the maximum CO false response from cigarette smoke, hairspray and general aerosols reaches a low value of a few μL/L and only if the substance is directly applied into the sensor gas inlet. Therefore this sensor overcomes the disadvantage of high false alarm rate given by smoke detectors and is also in small size which is suitable for household and industrial applications. Hence, the VCSEL-based TDLS sensor is shown to have sufficient performance for fire-detection. It has advantages such as capability for fail-safe operation and, low cross-sensitivities as compared to existing point fire detector technology which is presently limited by these factors.

© 2013 Optical Society of America

OCIS Codes
(300.6360) Spectroscopy : Spectroscopy, laser
(300.6380) Spectroscopy : Spectroscopy, modulation
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Sensors

History
Original Manuscript: October 21, 2013
Revised Manuscript: December 11, 2013
Manuscript Accepted: December 16, 2013
Published: May 30, 2014

Citation
A. Hangauer, J. Chen, R. Strzoda, M. Fleischer, and M.-C. Amann, "Performance of a fire detector based on a compact laser spectroscopic carbon monoxide sensor," Opt. Express 22, 13680-13690 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-11-13680


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S.-J. Chen, C. Hovde, K. A. Peterson, A. Marshal, “Fire detection using smoke and gas sensors,” Fire Saf. J. 42, 507–515 (2007). [CrossRef]
  2. T.-H. Chen, P.-H. Wu, Y.-C. Chiou, “An early fire-detection method based on image processing,” in Proceedings of the 2004 International Conference on Image Processing(2004), pp. 1707–1710.
  3. D. Gutmacher, U. Hoefer, J. Wöllenstein, “Gas sensor technologies for fire detection,” Sens. Actuators B 175, 40–45 (2012). [CrossRef]
  4. R. Pohle, E. Simon, R. Schneider, M. Fleischer, R. Sollacher, H. Gao, K. Müller, P. Jauch, M. Loepfe, H.-P. Frerichs, C. Wilbertz, “Fire detection with low power FET gas sensors,” Sens. Actuators B 120, 669–672 (2007). [CrossRef]
  5. U. Hoefer, D. Gutmacher, “Fire gas detection,” Procedia Eng. 47, 1446–1459 (2012). [CrossRef]
  6. P. Stefanski, R. Lewicki, J. Tarka, Y. Ma, M. Jahjah, F. K. Tittel, “Sensitive detection of carbon monoxide using a compact high power CW DFB-QCL based QEPAS sensor,” in Conference on Lasers and Electro-Optics 2013, paper JW2A.68.
  7. A. A. Kosterev, F. K. Tittel, “Advanced quartz-enhanced photoacoustic trace gas sensor for early fire detection,” SAE Int. J. Aerosp. 1, 331–336 (2009).
  8. R. Engelbrecht, “A compact NIR fiber-optic diode laser spectrometer for CO and CO2: analysis of observed 2f wavelength modulation spectroscopy line shapes,” Spectrochim. Acta, Part A 60, 3291–3298 (2004). [CrossRef]
  9. D. S. Bomse, D. C. Hovde, S.-J. Chen, J. A. Silver, “Early fire sensing using near-IR diode laser spectroscopy,” in “Diode Lasers and Applications in Atmospheric Sensing,”, Proc. SPIE 4817, 73–81 (2002). [CrossRef]
  10. E. A. Fallows, T. G. Cleary, J. H. Miller, “Development of a multiple gas analyzer using cavity ringdown spectroscopy for use in advanced fire detection,” Appl. Opt. 48, 695–703 (2009). [CrossRef] [PubMed]
  11. J. L. Bradshaw, J. D. Bruno, K. M. Lascola, R. P. Leavitt, J. T. Pham, F. J. Towner, D. M. Sonnenfroh, K. R. Parameswaran, “Small low-power consumption CO-sensor for post-fire cleanup aboard spacecraft,” Proc. SPIE 8032, 80320D (2011). [CrossRef]
  12. B. Scherer, H. Hamid, J. Rosskopf, S. Forouhar, “Compact spectroscopic sensor for air quality monitoring in spacecrafts,” Proc. SPIE 7945, 79450S (2011). [CrossRef]
  13. Center for Disease Control and Prevention, “Carbon Monoxide Poisoning: Fact Sheet,” (CDC, 2013) http://www.cdc.gov/co/faqs.htm .
  14. A. Hangauer, “Detection schemes, algorithms and device modeling for tunable diode laser absorption spectroscopy,” Ph.D. thesis, Technische Universität München (2013). In Selected Topics of Semiconductor Physics and Technology, Vol 164, ISBN 978-3-941650-64-0. http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20130412-1113114-0-7 .
  15. J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers - comparison of experiment and theory,” Appl. Phys. B: Lasers Opt. 26, 203–210 (1981). [CrossRef]
  16. A. Hangauer, J. Chen, R. Strzoda, M. Ortsiefer, M.-C. Amann, “Wavelength modulation spectroscopy with a widely tunable InP-based 2.3 μm vertical-cavity surface-emitting laser,” Opt. Lett. 33, 1566–1568 (2008). [CrossRef] [PubMed]
  17. J. Chen, A. Hangauer, R. Strzoda, M.-C. Amann, “VCSEL-based calibration-free carbon monoxide sensor at 2.3 μm with in-line reference cell,” Appl. Phys. B: Lasers Opt. 102, 381–389 (2010). [CrossRef]
  18. S. So, E. Jeng, C. Smith, D. Krueger, G. Wysocki, “Next generation infrared sensor instrumentation: remote sensing and sensor networks using the openPHOTONS repository,” Proc. SPIE 7808, 780818 (2010). [CrossRef]
  19. A. Hangauer, J. Chen, R. Strzoda, M.-C. Amann, “Laser wavelength stabilization using gases with complex spectral fingerprint,” presented at International Conference on Field Laser Applications in Industry and Research, Garmisch-Partenkirchen, Germany, 2009.
  20. M. Ortsiefer, G. Böhm, M. Grau, K. Windhorn, E. Rönneberg, J. Rosskopf, R. Shau, O. Dier, M.-C. Amann, “Electrically pumped room temperature CW VCSELs with 2.3 μm emission wavelength,” Electron. Lett. 42, 640–641 (2006). [CrossRef]
  21. G. Böhm, M. Grau, O. Dier, K. Windhorn, E. Rönneberg, J. Rosskopf, R. Shau, R. Meyer, M. Ortsiefer, M.-C. Amann, “Growth of InAs-containing quantum wells for InP-based VCSELs emitting at 2.3 μm,” J. Cryst. Growth 301, 941–944 (2007). [CrossRef]
  22. A. Bachmann, T. Lim, K. Kashani-Shirazi, O. Dier, C. Lauer, M.-C. Amann, “Continuous-wave operation of electrically pumped GaSb-based vertical cavity surface emitting laser at 2.3 μm,” Electron. Lett. 44, 202–203 (2008). [CrossRef]
  23. J. Chen, A. Hangauer, R. Strzoda, M. C. Amann, “Tunable diode laser spectroscopy with optimum wavelength scanning,” Appl. Phys. B: Lasers Opt. 100, 331–339 (2010). [CrossRef]
  24. European Standard, EN54-7: Fire detection and fire alarm systems - Part 7: Smoke detectors - point detectors using scattered light, transmitted light or ionization (Beuth, 2001).
  25. European Standard, EN54-15: Fire detection and fire alarm systems - Part 15: Point detectors using a combination of detected fire phenomena (Beuth, 2006).
  26. European Standard, EN54-26: Fire detection and fire alarm systems - Part 26: Point fire detectors using carbon monoxide sensors (Beuth, 2008).
  27. American Conference of Governmental Industrial Hygienists, 2005 Threshold Limit Values and Biological Exposure Indices (American Conference of Governmental Industrial Hygienists, 2005).
  28. L. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. Brown, M. Carleer, C. Chackerian, K. Chance, L. Coudert, V. Dana, V. Devi, J. M. Flaud, R. Gamache, A. Goldman, J.-M. Hartmann, K. Jucks, A. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. Rinsland, M. Smith, J. Tennyson, R. Tolchenov, R. Toth, J. Vander Auwera, P. Varanasi, G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96, 139–204 (2005). [CrossRef]
  29. S. W. Sharpe, T. J. Johnson, R. L. Sams, P. M. Chu, G. C. Rhoderick, P. A. Johnson, “Gas-phase databases for quantitative infrared spectroscopy,” Appl. Spectrosc. 58, 1452–1461 (2004). [CrossRef] [PubMed]
  30. An aerosol mixture for testing of smoke detectors was used. The exact contents are unknown.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited