OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 11 — Jun. 2, 2014
  • pp: 13719–13732

Complete polarimetry on the asymmetric transmission through subwavelength hole arrays

Oriol Arteaga, Ben M. Maoz, Shane Nichols, Gil Markovich, and Bart Kahr  »View Author Affiliations

Optics Express, Vol. 22, Issue 11, pp. 13719-13732 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (9325 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Dissymmetric, periodically nanostructured metal films can show non-reciprocal transmission of polarized light, in apparent violation of the Lorentz reciprocity theorem. The wave vector dependence of the extraordinary optical transmission in gold films with square and oblique subwavelength hole arrays was examined for the full range of polarized light input states. In normal incidence, the oblique lattice, in contrast to square lattice, showed strong asymmetric, non-reciprocal transmission of circularly polarized light. By analyzing the polarization of the input and the output with a complete Mueller matrix polarimeter the mechanisms that permits asymmetric transmission while preserving the requirement of electromagnetic reciprocity is revealed: the coupling of the linear anisotropies induced by misaligned surface plasmons in the film. The square lattice also shows asymmetric transmission at non-normal incidence, whenever the plane of incidence does not coincide with a mirror line.

© 2014 Optical Society of America

OCIS Codes
(120.5410) Instrumentation, measurement, and metrology : Polarimetry
(240.6680) Optics at surfaces : Surface plasmons
(160.1585) Materials : Chiral media

ToC Category:

Original Manuscript: February 3, 2014
Revised Manuscript: March 29, 2014
Manuscript Accepted: March 31, 2014
Published: May 30, 2014

Oriol Arteaga, Ben M. Maoz, Shane Nichols, Gil Markovich, and Bart Kahr, "Complete polarimetry on the asymmetric transmission through subwavelength hole arrays," Opt. Express 22, 13719-13732 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. J. Potton, “Reciprocity in optics,” Rep. Prog. Phys. 67(5), 717–754 (2004). [CrossRef]
  2. V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006). [CrossRef] [PubMed]
  3. V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, S. L. Prosvirnin, “Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures,” Nano Lett. 7(7), 1996–1999 (2007). [CrossRef]
  4. A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, N. I. Zheludev, “Nanostructured metal film with asymmetric optical transmission,” Nano Lett. 8(9), 2940–2943 (2008). [CrossRef] [PubMed]
  5. R. Zhao, L. Zhang, J. Zhou, T. Kochny, C. M. Soukoulis, “Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index,” Phys. Rev. B 83(3), 035105 (2011). [CrossRef]
  6. E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, N. I. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett. 102(11), 113902 (2009). [CrossRef] [PubMed]
  7. B. Gompf, J. Braun, T. Weiss, H. Giessen, M. Dressel, U. Hübner, “Periodic nanostructures: spatial dispersion mimics chirality,” Phys. Rev. Lett. 106(18), 185501 (2011). [CrossRef] [PubMed]
  8. N. Berova, P. Polavarapu, K. Nakanishi, and R. W. Woody, eds., Comprehensive Chiroptical Spectroscopy, Volumes 1 & 2, (Wiley VCH, 2012).
  9. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998). [CrossRef]
  10. P. Lalanne, J. P. Hugonin, “Microscopic theory of the extraordinary optical transmission,” Nat. Phys. 2, 551 (2006). [CrossRef]
  11. F. van Beijnum, C. Rétif, C. B. Smiet, H. Liu, P. Lalanne, M. P. van Exter, “Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission,” Nature 492(7429), 411–414 (2012). [CrossRef] [PubMed]
  12. D. A. Goldstein, Polarized Light (Marcel Dekker, New York,2003).
  13. O. Arteaga, “Number of independent parameters in the Mueller matrix representation of homogeneous depolarizing media,” Opt. Lett. 38(7), 1131–1133 (2013). [CrossRef] [PubMed]
  14. A. Schönhofer, H.-G. Kuball, “Symmetry properties of the Mueller matrix,” Chem. Phys. 115(2), 159–167 (1987). [CrossRef]
  15. O. Arteaga, J. Freudenthal, B. Wang, B. Kahr, “Mueller matrix polarimetry with four photoelastic modulators: theory and calibration,” Appl. Opt. 51(28), 6805–6817 (2012). [CrossRef] [PubMed]
  16. To determine the intensity of transmitted RCPL and LCPL it is necessary to multiply the output Stokes vector by the Mueller matrix of a right and left circular polarizer. This operation is equivalent to multiply the first Stokes parameters by the last (negated in the case of LCPL).
  17. R. Ossikovski, “Differential matrix formalism for depolarizing anisotropic media,” Opt. Lett. 36(12), 2330–2332 (2011). [CrossRef] [PubMed]
  18. O. Arteaga, B. Kahr, “Characterization of homogenous depolarizing media based on Mueller matrix differential decomposition,” Opt. Lett. 38(7), 1134–1136 (2013). [CrossRef] [PubMed]
  19. We use the word “dichroism” to be consistent with published literature. However, it should be reminded that the transmissions peaks observed in CD and LD can be due not only to absorption but also correspond to reflection/scattering peaks for the incoming light.
  20. J. Schellman, H. P. Jensen, “Optical spectroscopy of oriented molecules,” Chem. Rev. 87(6), 1359–1399 (1987). [CrossRef]
  21. O. Arteaga, A. Canillas, “Pseudopolar decomposition of the Jones and Mueller-Jones exponential polarization matrices,” J. Opt. Soc. Am. A 26(4), 783–793 (2009). [CrossRef] [PubMed]
  22. K. Claborn, A.-S. Chu, S.-H. Jang, F. Su, W. Kaminsky, B. Kahr, “Circular extinction imaging: determination of the absolute orientation of embedded chromophores in enantiomorphously twinned LiKSO4 crystals,” Cryst. Growth Des. 5(6), 2117–2123 (2005). [CrossRef]
  23. A. Shtukenberg, Y. Punin, and B. Kahr, Optically anomalous crystals, (Springer, 2007).
  24. A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett. 90(10), 107404 (2003). [CrossRef] [PubMed]
  25. L. Wu, Z. Y. Yang, Y. Cheng, Z. Lu, P. Zhang, M. Zhao, R. Gong, X. Yuan, Y. Zheng, J. Duan, “Electromagnetic manifestation of chirality in layer-by-layer chiral metamaterials,” Opt. Express 21(5), 5239–5246 (2013). [CrossRef] [PubMed]
  26. C. Genet, T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007). [CrossRef] [PubMed]
  27. V. V. Temnov, U. Woggon, J. Dintinger, E. Devaux, T. W. Ebbesen, “Surface plasmon interferometry: measuring group velocity of surface plasmons,” Opt. Lett. 32(10), 1235–1237 (2007). [CrossRef] [PubMed]
  28. E. Altewischer, M. P. van Exter, J. P. Woerdman, “Polarization analysis of propagating surface plasmons in a subwavelength hole arrays,” J. Opt. Soc. Am. B 20(9), 1927 (2003). [CrossRef]
  29. K. L. van der Molen, F. B. Segerink, N. F. van Hulst, L. Kuipers, “Influence of hole size on theextraordinary transmission through subwavelength hole arrays,” Appl. Phys. Lett. 85(19), 4316–4318 (2004). [CrossRef]
  30. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited