OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 11 — Jun. 2, 2014
  • pp: 13744–13754

Generation and subwavelength focusing of longitudinal magnetic fields in a metallized fiber tip

Daniel Ploss, Arian Kriesch, Hannes Pfeifer, Peter Banzer, and Ulf Peschel  »View Author Affiliations


Optics Express, Vol. 22, Issue 11, pp. 13744-13754 (2014)
http://dx.doi.org/10.1364/OE.22.013744


View Full Text Article

Enhanced HTML    Acrobat PDF (4697 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate experimentally and numerically that in fiber tips as they are used in NSOMs azimuthally polarized electrical fields (|Eazi|2 / |Etot|2 ≈55% ± 5% for λ0 = 1550 nm), respectively subwavelength confined (FWHM ≈450 nm ≈λ0/3.5) magnetic fields, are generated for a certain tip aperture diameter (d = 1.4 μm). We attribute the generation of this field distribution in metal-coated fiber tips to symmetry breaking in the bend and subsequent plasmonic mode filtering in the truncated conical taper.

© 2014 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.5430) Physical optics : Polarization
(180.4243) Microscopy : Near-field microscopy
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Plasmonics

History
Original Manuscript: January 22, 2014
Revised Manuscript: March 19, 2014
Manuscript Accepted: April 25, 2014
Published: May 30, 2014

Citation
Daniel Ploss, Arian Kriesch, Hannes Pfeifer, Peter Banzer, and Ulf Peschel, "Generation and subwavelength focusing of longitudinal magnetic fields in a metallized fiber tip," Opt. Express 22, 13744-13754 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-11-13744


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Greffet, R. Carminati, “Image formation in near-field optics,” Prog. Surf. Sci. 56(3), 133–237 (1997). [CrossRef]
  2. U. Dürig, D. W. Pohl, F. Rohner, “Near-field optical-scanning microscopy,” J. Appl. Phys. 59(10), 3318 (1986). [CrossRef]
  3. R. C. Dunn, “Near-field scanning optical microscopy,” Chem. Rev. 99(10), 2891–2928 (1999). [CrossRef] [PubMed]
  4. H. Heinzelmann, D. W. Pohl, “Scanning near-field optical microscopy,” Appl. Phys., A Mater. Sci. Process. 59(2), 89–101 (1994). [CrossRef]
  5. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).
  6. B. Bhushan, H. Fuchs, and M. Tomitori, Applied Scanning ProbeMethods VIII (Springer, 2008).
  7. K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics 1(1), 53–56 (2007). [CrossRef]
  8. E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251(5000), 1468–1470 (1991). [CrossRef] [PubMed]
  9. E. Betzig, J. K. Trautman, J. S. Weiner, T. D. Harris, R. Wolfe, “Polarization contrast in near-field scanning optical microscopy,” Appl. Opt. 31(22), 4563–4568 (1992). [CrossRef] [PubMed]
  10. Y. Mitsuoka, K. Nakajima, K. Homma, N. Chiba, H. Muramatsu, T. Ataka, K. Sato, “Polarization properties of light emitted by a bent optical fiber probe and polarization contrast in scanning near-field optical microscopy,” J. Appl. Phys. 83(8), 3998–4003 (1998). [CrossRef]
  11. M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326(5952), 550–553 (2009). [CrossRef] [PubMed]
  12. H. W. Kihm, S. M. Koo, Q. H. Kim, K. Bao, J. E. Kihm, W. S. Bak, S. H. Eah, C. Lienau, H. Kim, P. Nordlander, N. J. Halas, N. K. Park, D.-S. Kim, “Bethe-hole polarization analyser for the magnetic vector of light,” Nat. Commun. 2, 451 (2011). [CrossRef] [PubMed]
  13. H. W. Kihm, J. Kim, S. Koo, J. Ahn, K. Ahn, K. Lee, N. Park, D.-S. Kim, “Optical magnetic field mapping using a subwavelength aperture,” Opt. Express 21(5), 5625–5633 (2013). [CrossRef] [PubMed]
  14. L. Neumann, Y. Pang, A. Houyou, M. L. Juan, R. Gordon, N. F. van Hulst, “Extraordinary optical transmission brightens near-field fiber probe,” Nano Lett. 11(2), 355–360 (2011). [CrossRef] [PubMed]
  15. T. J. Antosiewicz, T. Szoplik, “Corrugated metal-coated tapered tip for scanning near-field optical microscope,” Opt. Express 15(17), 10920–10928 (2007). [CrossRef] [PubMed]
  16. T. J. Antosiewicz, P. Wróbel, T. Szoplik, “Magnetic field concentrator for probing optical magnetic metamaterials,” Opt. Express 18(25), 25906–25911 (2010). [CrossRef] [PubMed]
  17. P. Wróbel, T. J. Antosiewicz, T. Stefaniuk, T. Szoplik, “Plasmonic concentrator of magnetic field of light,” J. Appl. Phys. 112(7), 074304 (2012). [CrossRef]
  18. B. le Feber, N. Rotenberg, D. M. Beggs, L. Kuipers, “Simultaneous measurement of nanoscale electric and magnetic optical fields,” Nat. Photonics 8, 43–46 (2013).
  19. L. Stern, B. Desiatov, I. Goykhman, G. M. Lerman, U. Levy, “Near field phase mapping exploiting intrinsic oscillations of aperture NSOM probe,” Opt. Express 19(13), 12014–12020 (2011). [CrossRef] [PubMed]
  20. E. Betzig, A. Lewis, A. Harootunian, M. Isaacson, E. Kratschmer, “Near field scanning optical microscopy (NSOM): development and biophysical applications,” Biophys. J. 49(1), 269–279 (1986). [CrossRef] [PubMed]
  21. A. Kriesch, S. P. Burgos, D. Ploss, H. Pfeifer, H. A. Atwater, U. Peschel, “Functional plasmonic nanocircuits with low insertion and propagation losses,” Nano Lett. 13(9), 4539–4545 (2013). [CrossRef] [PubMed]
  22. R. Dorn, S. Quabis, G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003). [CrossRef] [PubMed]
  23. P. Banzer, U. Peschel, S. Quabis, G. Leuchs, “On the experimental investigation of the electric and magnetic response of a single nano-structure,” Opt. Express 18(10), 10905–10923 (2010). [CrossRef] [PubMed]
  24. J. Sancho-Parramon, S. Bosch, “Dark modes and fano resonances in plasmonic clusters excited by cylindrical vector beams,” ACS Nano 6(9), 8415–8423 (2012). [CrossRef] [PubMed]
  25. W. Bao, M. Melli, N. Caselli, F. Riboli, D. S. Wiersma, M. Staffaroni, H. Choo, D. F. Ogletree, S. Aloni, J. Bokor, S. Cabrini, F. Intonti, M. B. Salmeron, E. Yablonovitch, P. J. Schuck, A. Weber-Bargioni, “Mapping local charge recombination heterogeneity by multidimensional nanospectroscopic imaging,” Science 338(6112), 1317–1321 (2012). [CrossRef] [PubMed]
  26. L. Neumann, J. van ’t Oever, N. F. van Hulst, “A resonant scanning dipole-antenna probe for enhanced nanoscale imaging,” Nano Lett. 13(11), 5070–5074 (2013). [CrossRef] [PubMed]
  27. H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, E. Yablonovitch, “Nanofocusing in a metal–insulator–metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012). [CrossRef]
  28. Y. Wang, W. Srituravanich, C. Sun, X. Zhang, “Plasmonic nearfield scanning probe with high transmission,” Nano Lett. 8(9), 3041–3045 (2008). [CrossRef] [PubMed]
  29. L. Novotny, D. W. Pohl, P. Regli, “Light propagation through nanometer-sized structures: the two-dimensional-aperture scanning near-field optical microscope,” J. Opt. Soc. Am. A 11(6), 1768–1779 (1994). [CrossRef]
  30. E. D. Palik, D. W. Lynch, and W. R. Hunter, Handbook of Optical Constants (Optical Society of America, 1985), Vol. 1, pp. 286–295.
  31. Corning SMF-28 Optical Fiber (Corning Inc., 2002), Vol. PI1036, pp. 1–4, http://www.photonics.byu.edu/FiberOpticConnectors.parts/images/smf28.pdf .
  32. P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]
  33. A. J. Ward, J. B. Pendry, “The theory of SNOM: A novel approach,” J. Mod. Opt. 44(9), 1703–1714 (1997). [CrossRef]
  34. L. Novotny, C. Hafner, “Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 50(5), 4094–4106 (1994). [CrossRef] [PubMed]
  35. P. Banzer, J. Kindler, S. Quabis, U. Peschel, G. Leuchs, “Extraordinary transmission through a single coaxial aperture in a thin metal film,” Opt. Express 18(10), 10896–10904 (2010). [CrossRef] [PubMed]
  36. S. Ramachandran, P. Kristensen, M. F. Yan, “Generation and propagation of radially polarized beams in optical fibers,” Opt. Lett. 34(16), 2525–2527 (2009). [CrossRef] [PubMed]
  37. A. Witkowska, S. G. Leon-Saval, A. Pham, T. A. Birks, “All-fiber LP11 mode convertors,” Opt. Lett. 33(4), 306–308 (2008). [CrossRef] [PubMed]
  38. G. Volpe, D. Petrov, “Generation of cylindrical vector beams with few-mode fibers excited by Laguerre–Gaussian beams,” Opt. Commun. 237(1-3), 89–95 (2004). [CrossRef]
  39. T. Grosjean, D. Courjon, M. Spajer, “An all-fiber device for generating radially and other polarized light beams,” Opt. Commun. 203(1-2), 1–5 (2002). [CrossRef]
  40. P. Uebel, M. A. Schmidt, M. Scharrer, P. S. J. Russell, “An azimuthally polarizing photonic crystal fibre with a central gold nanowire,” New J. Phys. 13(063016), 1–7 (2011).
  41. A. K. Sarychev, G. Shvets, V. M. Shalaev, “Magnetic plasmon resonance,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(3), 036609 (2006). [CrossRef] [PubMed]
  42. C. Enkrich, F. Pérez-Willard, D. Gerthsen, J. F. Zhou, T. Koschny, C. M. Soukoulis, M. Wegener, S. Linden, “Focused-ion-beam nanofabrication of near-infrared magnetic metamaterials,” Adv. Mater. 17(21), 2547–2549 (2005). [CrossRef]
  43. M. Husnik, M. W. Klein, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, M. Wegener, “Absolute extinction cross-section of individual magnetic split-ring resonators,” Nat. Photonics 2(10), 614–617 (2008). [CrossRef]
  44. N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84(15), 2943–2945 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited